/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h Copyright (C) 2015 Author: Daniel Richtmann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H #define GRID_GENERALISED_MINIMAL_RESIDUAL_H // from Y. Saad - Iterative Methods for Sparse Linear Systems, PP 172 // Compute r0 = b − Ax0 , β := ||r0||2 , and v1 := r0 /β // For j = 1, 2, ..., m Do: // Compute wj := Avj // For i = 1, ..., j Do: // hij := (wj , vi) // wj := wj − hij vi // EndDo // hj+1,j = ||wj||2 . If hj+1,j = 0 set m := j and go to HERE // vj+1 = wj /hj+1,j // EndDo // Define the (m + 1) × m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. [HERE] // Compute ym the minimizer of ||βe1 − H̄m y||2 and xm = x0 + Vm ym. /////////////////////////////////////////////////////////////////////////////////////////////////////// // want to solve Ax = b -> A = LinOp, psi = x, b = src namespace Grid { template class GeneralisedMinimalResidual : public OperatorFunction { public: bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge, // defaults to True. RealD Tolerance; Integer MaxIterations; Integer RestartLength; Integer IterationsToComplete; // Number of iterations the GMRES took to // finish. Filled in upon completion GridStopWatch MatrixTimer; GridStopWatch PrecTimer; GridStopWatch LinalgTimer; GeneralisedMinimalResidual(RealD tol, Integer maxit, Integer restart_length, bool err_on_no_conv = true) : Tolerance(tol), MaxIterations(maxit), RestartLength(restart_length), ErrorOnNoConverge(err_on_no_conv){}; // want to solve Ax = b -> A = LinOp, psi = x, b = src /* void */ /* operator()(LinearOperatorBase &LinOp, const Field &src, Field &psi) * { */ /* typedef typename Eigen::MatrixXcd MyMatrix; */ /* typedef typename Eigen::VectorXcd MyVector; */ /* Field r(src); */ /* Field w(src); */ /* Field mmv(src); */ /* std::vector V(MaxIterations + 1, src); */ /* std::vector> y(MaxIterations + 1, 0.); */ /* std::vector> gamma(MaxIterations + 1, 0.); */ /* std::vector> c(MaxIterations + 1, 0.); */ /* std::vector> s(MaxIterations + 1, 0.); */ /* int m = MaxIterations; */ /* RealD gamma0{}; */ /* MyMatrix H = Eigen::MatrixXcd::Zero(MaxIterations + 1, MaxIterations); */ /* RealD normPsiSq = norm2(psi); */ /* RealD normSrcSq = norm2(src); */ /* RealD TargetResSq = Tolerance * Tolerance * normSrcSq; */ /* LinOp.Op(psi, mmv); */ /* r = src - mmv; */ /* gamma[0] = norm2(r); */ /* std::cout << gamma[0] << std::endl; */ /* gamma0 = std::real(gamma[0]); */ /* V[0] = (1. / gamma[0]) * r; */ /* std::cout << GridLogMessage << std::setprecision(4) */ /* << "GeneralisedMinimalResidual: psi " << normPsiSq */ /* << std::endl; */ /* std::cout << GridLogMessage << std::setprecision(4) */ /* << "GeneralisedMinimalResidual: src " << normSrcSq */ /* << std::endl; */ /* std::cout << GridLogMessage << std::setprecision(4) */ /* << "GeneralisedMinimalResidual: target " << TargetResSq */ /* << std::endl; */ /* std::cout << GridLogMessage << std::setprecision(4) */ /* << "GeneralisedMinimalResidual: r " << gamma0 << * std::endl; */ /* std::cout */ /* << GridLogIterative << std::setprecision(4) */ /* << "GeneralisedMinimalResidual: before starting to iterate residual " */ /* << gamma0 << " target " << TargetResSq << std::endl; */ /* for(auto j = 0; j < m; ++j) { */ /* LinOp.Op(V[j], w); */ /* for(auto i = 0; i <= j; ++i) { */ /* H(i, j) = innerProduct(V[i], w); */ /* w = w - H(i, j) * V[i]; */ /* } */ /* H(j + 1, j) = norm2(w); */ /* V[j + 1] = (1. / H(j + 1, j)) * w; */ /* if(std::abs(H(j + 1, j)) > 1e-15) { */ /* qrUpdate(gamma, c, s, H, j); */ /* } */ /* /\* std::cout << GridLogMessage << "GeneralisedMinimalResidual: H( " * *\/ */ /* /\* << j + 1 << "," << j << " ) = " << H( j + 1, j ) *\/ */ /* /\* << std::endl; *\/ */ /* std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration * " */ /* << j << " residual " << std::abs(gamma[j + 1]) << " target " */ /* << TargetResSq << std::endl; */ /* if(std::abs(gamma[j + 1]) / gamma0 < Tolerance) { */ /* IterationsToComplete = j; */ /* break; */ /* } */ /* } */ /* computeSolution(y, gamma, H, V, psi, IterationsToComplete); */ /* std::cout << GridLogMessage */ /* << "GeneralisedMinimalResidual: End of operator() after " */ /* << IterationsToComplete << " iterations" << std::endl; */ /* RealD normSrc = sqrt(normSrcSq); */ /* RealD resnorm = sqrt(norm2(mmv)); */ /* RealD true_residual = resnorm / srcnorm; */ /* Field result = mmv; */ /* Field Dx(src); */ /* Field tmp(src); */ /* // Test the correctness */ /* LinOp.Op(result, Dx); */ /* tmp = Dx - src; */ /* std::cout << norm2(tmp) << " " << norm2(tmp) / gamma0 << std::endl; */ /* } */ void operator()(LinearOperatorBase &LinOp, const Field &src, Field &psi) { psi.checkerboard = src.checkerboard; psi(conformable, src); RealD guess = norm2(psi); assert(std::isnan(guess) == 0); RealD cp; RealD ssq = norm2(src); RealD rsd_sq = Tolerance * Tolerance * ssq; Field r(src._grid); PrecTimer.Reset(); MatrixTimer.Reset(); LinalgTimer.Reset(); GridStopWatch SolverTimer; SolverTimer.Start(); int iterations = 0; for (int k=0; k &LinOp, const Field &src, Field &psi, RealD rsd_sq) { RealD cp = 0; Field w(src._grid); Field r(src._grid); auto whatDoWePutHere = 1; std::vector v(whatDoWePutHere, src._grid); // in MG code: m + 1 std::vector> gamma(whatDoWePutHere, 0.); // in MG code: m + 1 MatrixTimer.Start(); LinOp.Op(psi, w); // w = D * psi MatrixTimer.Stop(); LinalgTimer.Start(); r = src - w; gamma[0] = norm2(r); // do we need an explicit cast? // in MG code: sqrt around/within the norm v[0] = (1. / gamma[0]) * r; LinalgTimer.Stop(); for (int i=0; irestart_length arnoldiStep(LinOp, v, w, whatDoWePutHere); // in MG code: j /////////////////////////////////////////////////////////////////////// // Begin of QR Update ///////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// qrUpdate(whatDoWePutHere); // in MG code: j /////////////////////////////////////////////////////////////////////// // End of QR Update /////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// if ((whatDoWePutHere) || (cp < rsd_sq)) { // in VPGCR code: (k == nstep-1) // compute solution return cp; } } } void arnoldiStep(LinearOperatorBase &LinOp, std::vector &v, Field &w, int iter) { MatrixTimer.Start(); LinOp.Op(v[iter], w); MatrixTimer.Stop(); LinalgTimer.Start(); for(int i = 0; i <= iter; ++i) { H(i, iter) = innerProduct(v[i], w); w = w - H(i, iter) * v[i]; } H(iter + 1, iter) = norm2(w); // in MG code: sqrt around/within the norm v[iter + 1] = (1. / H(iter + 1, iter)) * w; LinalgTimer.Stop(); } void qrUpdate(int iter) { for(int i = 0; i < iter ; ++i) { auto tmp = -s[i] * H(i, iter) + c[i] * H(i + 1, iter); H(i, iter) = std::conj(c[i]) * H(i, iter) + std::conj(s[i]) * H(i + 1, iter); H(i + 1, iter) = tmp; } // compute new Givens Rotation ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter + 1, iter))); c[iter] = H(iter, iter) / nu; s[iter] = H(iter + 1, iter) / nu; // apply new Givens rotation H(iter, iter) = nu; H(iter + 1, iter) = 0.; /* ORDERING??? */ gamma[iter + 1] = -s[iter] * gamma[iter]; gamma[iter] = std::conj(c[iter]) * gamma[iter]; } void Step() { int m = MaxIterations; Field r(src); Field w(src); Field Dpsi(src); Field Dv(src); std::vector v(m + 1, src); Eigen::MatrixXcd H = Eigen::MatrixXcd::Zero(m + 1, m); std::vector> y(m + 1, 0.); std::vector> gamma(m + 1, 0.); std::vector> c(m + 1, 0.); std::vector> s(m + 1, 0.); // Initial residual computation & set up RealD guess = norm2(psi); assert(std::isnan(guess) == 0); RealD ssq = norm2(src); // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "source squared" RealD rsd_sq = Tolerance * Tolerance * ssq; // flopcount.addSiteFlops(4*Nc*Ns,s); // stands for "residual squared" LinOp.Op(psi, Dpsi); r = src - Dpsi; RealD cp = norm2(r); // cp = beta in WMG nomenclature, in WMG there is no norm2 but a sqrt(norm2) here gamma[0] = cp; std::cout << GridLogIterative << "cp " << cp << std::endl; v[0] = (1. / cp) * r; std::cout << GridLogIterative << std::setprecision(4) << "GeneralizedMinimalResidual: guess " << guess << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "GeneralizedMinimalResidual: src " << ssq << std::endl; // std::cout << GridLogIterative << std::setprecision(4) << "GeneralizedMinimalResidual: mp " << d << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "GeneralizedMinimalResidual: cp,r " << cp << std::endl; if (cp <= rsd_sq) { return; } std::cout << GridLogIterative << std::setprecision(4) << "GeneralizedMinimalResidual: k=0 residual " << cp << " target " << rsd_sq << std::endl; GridStopWatch SolverTimer; GridStopWatch MatrixTimer; SolverTimer.Start(); for(auto j = 0; j < m; ++j) { // std::cout << GridLogIterative << "GeneralizedMinimalResidual: Start of outer loop with index j = " << j << std::endl; MatrixTimer.Start(); LinOp.Op(v[j], Dv); MatrixTimer.Stop(); w = Dv; for(auto i = 0; i <= j; ++i) { H(i, j) = innerProduct(v[i], w); w = w - H(i, j) * v[i]; } H(j + 1, j) = norm2(w); v[j + 1] = (1. / H(j + 1, j)) * w; // end of arnoldi process, begin of givens rotations // apply old Givens rotation for(auto i = 0; i < j ; ++i) { auto tmp = -s[i] * H(i, j) + c[i] * H(i + 1, j); H(i, j) = std::conj(c[i]) * H(i, j) + std::conj(s[i]) * H(i + 1, j); H(i + 1, j) = tmp; } // compute new Givens Rotation ComplexD nu = sqrt(std::norm(H(j, j)) + std::norm(H(j + 1, j))); c[j] = H(j, j) / nu; s[j] = H(j + 1, j) / nu; std::cout << GridLogIterative << "GeneralizedMinimalResidual: nu" << nu << std::endl; std::cout << GridLogIterative << "GeneralizedMinimalResidual: H("<> &gamma, */ /* std::vector> &c, */ /* std::vector> &s, */ /* Eigen::MatrixXcd & H, */ /* int j) { */ /* ComplexD cp{}; */ /* // update QR factorization */ /* // apply previous Givens rotation */ /* for(auto i = 0; i < j; i++) { */ /* cp = -s[i] * H(i, j) + c[i] * H(i + 1, j); */ /* H(i, j) = std::conj(c[i]) * H(i, j) + std::conj(s[i]) * H(i + 1, * j); */ /* H(i + 1, j) = cp; */ /* } */ /* // compute current Givens rotation */ /* cp = sqrt(std::norm(H(j, j)) + std::norm(H(j + 1, j))); */ /* s[j] = H(j + 1, j) / cp; */ /* c[j] = H(j, j) / cp; */ /* /\* std::cout << GridLogIterative << "cp= " << cp << std::endl; *\/ */ /* /\* std::cout << GridLogIterative << "s[j]= " << s[ j ] << std::endl; *\/ */ /* /\* std::cout << GridLogIterative << "c[j]= " << c[ j ] << std::endl; *\/ */ /* /\* std::cout << GridLogIterative << "gamma[j+1]= " << gamma[ j + 1 ] << std::endl; *\/ */ /* /\* std::cout << GridLogIterative << "gamma[j]= " << gamma[ j ] << std::endl; *\/ */ /* // update right column */ /* gamma[j + 1] = -s[j] * gamma[j]; */ /* gamma[j] = std::conj(c[j]) * gamma[j]; */ /* /\* std::cout << GridLogIterative << "gamma[j+1]= " << gamma[ j + 1 ] << std::endl; *\/ */ /* /\* std::cout << GridLogIterative << "gamma[j]= " << gamma[ j ] << std::endl; *\/ */ /* // apply current Givens rotation */ /* H(j, j) = cp; */ /* H(j + 1, j) = 0.; */ /* /\* std::cout << GridLogIterative << "H(j,j)= " << H( j, j ) << std::endl; *\/ */ /* /\* std::cout << GridLogIterative << "H(j+1,j)= " << H( j + 1, j ) << std::endl; *\/ */ /* } */ void computeSolution(std::vector> & y, std::vector> const &gamma, Eigen::MatrixXcd const & H, std::vector const & v, Field & x, int j) { for(auto i = iter; i >= 0; i--) { y[i] = gamma[i]; for(auto k = i + 1; k <= iter; k++) y[i] -= H(i, k) * y[k]; y[i] /= H(i, i); } /* if(true) // TODO ??? */ /* { */ /* for(auto i = 0; i <= iter; i++) */ /* x = x + v[i] * y[i]; */ /* } else { */ x = y[0] * v[0]; for(auto i = 1; i <= j; i++) x = x + v[i] * y[i]; /* } */ } }; } #endif