/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_lie_generators.cc Copyright (C) 2015 Author: Azusa Yamaguchi Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include #include #include #include using namespace std; using namespace Grid; using namespace Grid::QCD; int main(int argc, char** argv) { Grid_init(&argc, &argv); std::vector latt({4, 4, 4, 8}); GridCartesian* grid = SpaceTimeGrid::makeFourDimGrid( latt, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian* rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid); std::cout << GridLogMessage << "*********************************************" << std::endl; std::cout << GridLogMessage << "* Generators for SU(2)" << std::endl; std::cout << GridLogMessage << "*********************************************" << std::endl; SU2::printGenerators(); std::cout << "Dimension of adjoint representation: "<< SU2Adjoint::Dimension << std::endl; SU2Adjoint::printGenerators(); SU2::testGenerators(); SU2Adjoint::testGenerators(); std::cout << GridLogMessage << "*********************************************" << std::endl; std::cout << GridLogMessage << "* Generators for SU(3)" << std::endl; std::cout << GridLogMessage << "*********************************************" << std::endl; SU3::printGenerators(); std::cout << "Dimension of adjoint representation: "<< SU3Adjoint::Dimension << std::endl; SU3Adjoint::printGenerators(); SU3::testGenerators(); SU3Adjoint::testGenerators(); std::cout< AdjRep(grid); // AdjointRepresentation has the predefined number of colours Nc Representations RepresentationTypes(grid); LatticeGaugeField U(grid), V(grid); SU::HotConfiguration(gridRNG, U); SU::HotConfiguration(gridRNG, V); // Test group structure // (U_f * V_f)_r = U_r * V_r LatticeGaugeField UV(grid); UV = zero; for (int mu = 0; mu < Nd; mu++) { SU::LatticeMatrix Umu = peekLorentz(U,mu); SU::LatticeMatrix Vmu = peekLorentz(V,mu); pokeLorentz(UV,Umu*Vmu, mu); } AdjRep.update_representation(UV); typename AdjointRep::LatticeField UVr = AdjRep.U; // (U_f * V_f)_r AdjRep.update_representation(U); typename AdjointRep::LatticeField Ur = AdjRep.U; // U_r AdjRep.update_representation(V); typename AdjointRep::LatticeField Vr = AdjRep.U; // V_r typename AdjointRep::LatticeField UrVr(grid); UrVr = zero; for (int mu = 0; mu < Nd; mu++) { typename AdjointRep::LatticeMatrix Urmu = peekLorentz(Ur,mu); typename AdjointRep::LatticeMatrix Vrmu = peekLorentz(Vr,mu); pokeLorentz(UrVr,Urmu*Vrmu, mu); } typename AdjointRep::LatticeField Diff_check = UVr - UrVr; std::cout << GridLogMessage << "Group structure SU("<::LatticeAlgebraVector h_adj(grid); typename AdjointRep::LatticeMatrix Ar(grid); random(gridRNG,h_adj); h_adj = real(h_adj); SU_Adjoint::AdjointLieAlgebraMatrix(h_adj,Ar); // Re-extract h_adj SU::LatticeAlgebraVector h_adj2(grid); SU_Adjoint::projectOnAlgebra(h_adj2, Ar); SU::LatticeAlgebraVector h_diff = h_adj - h_adj2; std::cout << GridLogMessage << "Projections structure check vector difference : " << norm2(h_diff) << std::endl; // Exponentiate typename AdjointRep::LatticeMatrix Uadj(grid); Uadj = expMat(Ar, 1.0, 16); typename AdjointRep::LatticeMatrix uno(grid); uno = 1.0; // Check matrix Uadj, must be real orthogonal typename AdjointRep::LatticeMatrix Ucheck = Uadj - conjugate(Uadj); std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck) << std::endl; Ucheck = Uadj * adj(Uadj) - uno; std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck) << std::endl; Ucheck = adj(Uadj) * Uadj - uno; std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck) << std::endl; // Construct the fundamental matrix in the group SU::LatticeMatrix Af(grid); SU::FundamentalLieAlgebraMatrix(h_adj,Af); SU::LatticeMatrix Ufund(grid); Ufund = expMat(Af, 1.0, 16); // Check unitarity SU::LatticeMatrix uno_f(grid); uno_f = 1.0; SU::LatticeMatrix UnitCheck(grid); UnitCheck = Ufund * adj(Ufund) - uno_f; std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck) << std::endl; UnitCheck = adj(Ufund) * Ufund - uno_f; std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck) << std::endl; // Tranform to the adjoint representation U = zero; // fill this with only one direction pokeLorentz(U,Ufund,0); // the representation transf acts on full gauge fields AdjRep.update_representation(U); Ur = AdjRep.U; // U_r typename AdjointRep::LatticeMatrix Ur0 = peekLorentz(Ur,0); // this should be the same as Uadj typename AdjointRep::LatticeMatrix Diff_check_mat = Ur0 - Uadj; std::cout << GridLogMessage << "Projections structure check group difference : " << norm2(Diff_check_mat) << std::endl; Grid_finalize(); }