/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MContraction/Baryon.hpp Copyright (C) 2015-2019 Author: Antonin Portelli Author: Felix Erben This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MContraction_Baryon_hpp_ #define Hadrons_MContraction_Baryon_hpp_ #include #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Baryon * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MContraction) class BaryonPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar, std::string, q1, std::string, q2, std::string, q3, std::string, gamma, std::string, output); }; template class TBaryon: public Module { public: FERM_TYPE_ALIASES(FImpl1, 1); FERM_TYPE_ALIASES(FImpl2, 2); FERM_TYPE_ALIASES(FImpl3, 3); class Result: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(Result, std::vector, corr); }; public: // constructor TBaryon(const std::string name); // destructor virtual ~TBaryon(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); protected: // setup virtual void setup(void); // execution virtual void execute(void); // Which gamma algebra was specified Gamma::Algebra al; }; MODULE_REGISTER_TMP(Baryon, ARG(TBaryon), MContraction); /****************************************************************************** * TBaryon implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TBaryon::TBaryon(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TBaryon::getInput(void) { std::vector input = {par().q1, par().q2, par().q3}; return input; } template std::vector TBaryon::getOutput(void) { std::vector out = {}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TBaryon::setup(void) { envTmpLat(LatticeComplex, "c"); envTmpLat(LatticeComplex, "c1"); envTmpLat(LatticeComplex, "c2"); envTmpLat(LatticeComplex, "c3"); envTmpLat(LatticeComplex, "c4"); envTmpLat(LatticeComplex, "c5"); envTmpLat(LatticeComplex, "c6"); envTmpLat(LatticeComplex, "diquark"); // Translate the full string naming the desired gamma structure into the one we need to use const std::string gamma{ par().gamma }; int iGamma = 0; do { const char * pGammaName = Gamma::name[iGamma]; int iLen = 0; while( pGammaName[iLen] && pGammaName[iLen] != ' ' ) iLen++; if( !gamma.compare( 0, gamma.size(), pGammaName, iLen ) ) break; } while( ++iGamma < Gamma::nGamma ); if( iGamma >= Gamma::nGamma ) { LOG(Message) << "Unrecognised gamma structure \"" << gamma << "\"" << std::endl; assert( 0 && "Invalid gamma structure specified" ); } switch( iGamma ) { case Gamma::Algebra::GammaX: std::cout << "using interpolator C gamma_X" << std::endl; al = Gamma::Algebra::GammaZGamma5; //Still hardcoded CgX = i gamma_3 gamma_5 break; case Gamma::Algebra::GammaY: std::cout << "using interpolator C gamma_Y" << std::endl; al = Gamma::Algebra::GammaT; //Still hardcoded CgX = - gamma_4 break; case Gamma::Algebra::GammaZ: std::cout << "using interpolator C gamma_Z" << std::endl; al = Gamma::Algebra::GammaXGamma5; //Still hardcoded CgX = i gamma_1 gamma_5 break; default: { LOG(Message) << "Unsupported gamma structure " << gamma << " = " << iGamma << std::endl; assert( 0 && "Unsupported gamma structure" ); // or you could do something like al = static_cast( iGamma ); break; } } LOG(Message) << "Gamma structure " << gamma << " = " << iGamma << " translated to " << Gamma::name[al] << std::endl; } // execution /////////////////////////////////////////////////////////////////// template void TBaryon::execute(void) { LOG(Message) << "Computing baryon contractions '" << getName() << "' using" << " quarks '" << par().q1 << "', and a diquark formed of ('" << par().q2 << "', and '" << par().q3 << "')" << std::endl; auto &q1 = envGet(PropagatorField1, par().q1); auto &q2 = envGet(PropagatorField2, par().q2); auto &q3 = envGet(PropagatorField3, par().q3); envGetTmp(LatticeComplex, c); envGetTmp(LatticeComplex, c1); envGetTmp(LatticeComplex, c2); envGetTmp(LatticeComplex, c3); envGetTmp(LatticeComplex, c4); envGetTmp(LatticeComplex, c5); envGetTmp(LatticeComplex, c6); envGetTmp(LatticeComplex, diquark); Result result; int nt = env().getDim(Tp); result.corr.resize(nt); const std::string gamma{ par().gamma }; std::vector buf; Result result1; Result result2; Result result3; Result result4; Result result5; Result result6; result1.corr.resize(nt); result2.corr.resize(nt); result3.corr.resize(nt); result4.corr.resize(nt); result5.corr.resize(nt); result6.corr.resize(nt); std::vector buf1; std::vector buf2; std::vector buf3; std::vector buf4; std::vector buf5; std::vector buf6; const Gamma GammaA{ Gamma::Algebra::Identity }; const Gamma GammaB{ al }; //BaryonUtils::ContractBaryons(q1,q2,q3,GammaA,GammaB,c); BaryonUtils::ContractBaryons_debug(q1,q2,q3,GammaA,GammaB,c1,c2,c3,c4,c5,c6,c); sliceSum(c,buf,Tp); sliceSum(c1,buf1,Tp); sliceSum(c2,buf2,Tp); sliceSum(c3,buf3,Tp); sliceSum(c4,buf4,Tp); sliceSum(c5,buf5,Tp); sliceSum(c6,buf6,Tp); for (unsigned int t = 0; t < buf.size(); ++t) { result.corr[t] = TensorRemove(buf[t]); result1.corr[t] = TensorRemove(buf1[t]); result2.corr[t] = TensorRemove(buf2[t]); result3.corr[t] = TensorRemove(buf3[t]); result4.corr[t] = TensorRemove(buf4[t]); result5.corr[t] = TensorRemove(buf5[t]); result6.corr[t] = TensorRemove(buf6[t]); } std::string ostr1{ par().output + "_1"}; std::string ostr2{ par().output + "_2"}; std::string ostr3{ par().output + "_3"}; std::string ostr4{ par().output + "_4"}; std::string ostr5{ par().output + "_5"}; std::string ostr6{ par().output + "_6"}; saveResult(par().output, "baryon", result); saveResult(ostr1, "baryon1", result1); saveResult(ostr2, "baryon2", result2); saveResult(ostr3, "baryon3", result3); saveResult(ostr4, "baryon4", result4); saveResult(ostr5, "baryon5", result5); saveResult(ostr6, "baryon6", result6); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MContraction_Baryon_hpp_