/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/cartesian/Cartesian_red_black.h Copyright (C) 2015 Author: Azusa Yamaguchi Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef GRID_CARTESIAN_RED_BLACK_H #define GRID_CARTESIAN_RED_BLACK_H namespace Grid { static const int CbRed =0; static const int CbBlack=1; static const int Even =CbRed; static const int Odd =CbBlack; // Specialise this for red black grids storing half the data like a chess board. class GridRedBlackCartesian : public GridBase { public: std::vector _checker_dim_mask; int _checker_dim; std::vector _checker_board; virtual int CheckerBoarded(int dim){ if( dim==_checker_dim) return 1; else return 0; } virtual int CheckerBoard(const std::vector &site){ int linear=0; assert(site.size()==_ndimension); for(int d=0;d<_ndimension;d++){ if(_checker_dim_mask[d]) linear=linear+site[d]; } return (linear&0x1); } // Depending on the cb of site, we toggle source cb. // for block #b, element #e = (b, e) // we need virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){ if(dim != _checker_dim) return shift; int fulldim =_fdimensions[dim]; shift = (shift+fulldim)%fulldim; // Probably faster with table lookup; // or by looping over x,y,z and multiply rather than computing checkerboard. if ( (source_cb+ocb)&1 ) { return (shift)/2; } else { return (shift+1)/2; } } virtual int CheckerBoardFromOindexTable (int Oindex) { return _checker_board[Oindex]; } virtual int CheckerBoardFromOindex (int Oindex) { std::vector ocoor; oCoorFromOindex(ocoor,Oindex); return CheckerBoard(ocoor); } virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){ if(dim != _checker_dim) return shift; int ocb=CheckerBoardFromOindex(osite); return CheckerBoardShiftForCB(source_cb,dim,shift,ocb); } virtual int CheckerBoardDestination(int source_cb,int shift,int dim){ if ( _checker_dim_mask[dim] ) { // If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims // does NOT cause a parity hop. int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim]; if ( (shift+add) &0x1) { return 1-source_cb; } else { return source_cb; } } else { return source_cb; } }; GridRedBlackCartesian(const GridBase *base) : GridRedBlackCartesian(base->_fdimensions,base->_simd_layout,base->_processors) {}; GridRedBlackCartesian(const std::vector &dimensions, const std::vector &simd_layout, const std::vector &processor_grid, const std::vector &checker_dim_mask, int checker_dim ) : GridBase(processor_grid) { Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim); } GridRedBlackCartesian(const std::vector &dimensions, const std::vector &simd_layout, const std::vector &processor_grid) : GridBase(processor_grid) { std::vector checker_dim_mask(dimensions.size(),1); Init(dimensions,simd_layout,processor_grid,checker_dim_mask,0); } void Init(const std::vector &dimensions, const std::vector &simd_layout, const std::vector &processor_grid, const std::vector &checker_dim_mask, int checker_dim) { /////////////////////// // Grid information /////////////////////// _checker_dim = checker_dim; assert(checker_dim_mask[checker_dim] == 1); _ndimension = dimensions.size(); assert(checker_dim_mask.size() == _ndimension); assert(processor_grid.size() == _ndimension); assert(simd_layout.size() == _ndimension); _fdimensions.resize(_ndimension); _gdimensions.resize(_ndimension); _ldimensions.resize(_ndimension); _rdimensions.resize(_ndimension); _simd_layout.resize(_ndimension); _lstart.resize(_ndimension); _lend.resize(_ndimension); _ostride.resize(_ndimension); _istride.resize(_ndimension); _fsites = _gsites = _osites = _isites = 1; _checker_dim_mask = checker_dim_mask; for (int d = 0; d < _ndimension; d++) { _fdimensions[d] = dimensions[d]; _gdimensions[d] = _fdimensions[d]; _fsites = _fsites * _fdimensions[d]; _gsites = _gsites * _gdimensions[d]; if (d == _checker_dim) { assert((_gdimensions[d] & 0x1) == 0); _gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard } _ldimensions[d] = _gdimensions[d] / _processors[d]; assert(_ldimensions[d] * _processors[d] == _gdimensions[d]); _lstart[d] = _processor_coor[d] * _ldimensions[d]; _lend[d] = _processor_coor[d] * _ldimensions[d] + _ldimensions[d] - 1; // Use a reduced simd grid _simd_layout[d] = simd_layout[d]; _rdimensions[d] = _ldimensions[d] / _simd_layout[d]; // this is not checking if this is integer assert(_rdimensions[d] * _simd_layout[d] == _ldimensions[d]); assert(_rdimensions[d] > 0); // all elements of a simd vector must have same checkerboard. // If Ls vectorised, this must still be the case; e.g. dwf rb5d if (_simd_layout[d] > 1) { if (checker_dim_mask[d]) { assert((_rdimensions[d] & 0x1) == 0); } } _osites *= _rdimensions[d]; _isites *= _simd_layout[d]; // Addressing support if (d == 0) { _ostride[d] = 1; _istride[d] = 1; } else { _ostride[d] = _ostride[d - 1] * _rdimensions[d - 1]; _istride[d] = _istride[d - 1] * _simd_layout[d - 1]; } } //////////////////////////////////////////////////////////////////////////////////////////// // subplane information //////////////////////////////////////////////////////////////////////////////////////////// _slice_block.resize(_ndimension); _slice_stride.resize(_ndimension); _slice_nblock.resize(_ndimension); int block = 1; int nblock = 1; for (int d = 0; d < _ndimension; d++) nblock *= _rdimensions[d]; for (int d = 0; d < _ndimension; d++) { nblock /= _rdimensions[d]; _slice_block[d] = block; _slice_stride[d] = _ostride[d] * _rdimensions[d]; _slice_nblock[d] = nblock; block = block * _rdimensions[d]; } //////////////////////////////////////////////// // Create a checkerboard lookup table //////////////////////////////////////////////// int rvol = 1; for (int d = 0; d < _ndimension; d++) { rvol = rvol * _rdimensions[d]; } _checker_board.resize(rvol); for (int osite = 0; osite < _osites; osite++) { _checker_board[osite] = CheckerBoardFromOindex(osite); } }; protected: virtual int oIndex(std::vector &coor) { int idx = 0; for (int d = 0; d < _ndimension; d++) { if (d == _checker_dim) { idx += _ostride[d] * ((coor[d] / 2) % _rdimensions[d]); } else { idx += _ostride[d] * (coor[d] % _rdimensions[d]); } } return idx; }; virtual int iIndex(std::vector &lcoor) { int idx = 0; for (int d = 0; d < _ndimension; d++) { if (d == _checker_dim) { idx += _istride[d] * (lcoor[d] / (2 * _rdimensions[d])); } else { idx += _istride[d] * (lcoor[d] / _rdimensions[d]); } } return idx; } }; } #endif