/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h Copyright (C) 2015 Author: Peter Boyle Author: paboyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H #define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_RATIO_H NAMESPACE_BEGIN(Grid); /////////////////////////////////////// // Two flavour ratio /////////////////////////////////////// template class TwoFlavourEvenOddRatioPseudoFermionAction : public Action { public: INHERIT_IMPL_TYPES(Impl); private: FermionOperator & NumOp;// the basic operator FermionOperator & DenOp;// the basic operator OperatorFunction &DerivativeSolver; OperatorFunction &ActionSolver; FermionField PhiOdd; // the pseudo fermion field for this trajectory FermionField PhiEven; // the pseudo fermion field for this trajectory public: TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator &_NumOp, FermionOperator &_DenOp, OperatorFunction & DS, OperatorFunction & AS) : NumOp(_NumOp), DenOp(_DenOp), DerivativeSolver(DS), ActionSolver(AS), PhiEven(_NumOp.FermionRedBlackGrid()), PhiOdd(_NumOp.FermionRedBlackGrid()) { conformable(_NumOp.FermionGrid(), _DenOp.FermionGrid()); conformable(_NumOp.FermionRedBlackGrid(), _DenOp.FermionRedBlackGrid()); conformable(_NumOp.GaugeGrid(), _DenOp.GaugeGrid()); conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid()); }; virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";} virtual std::string LogParameters(){ std::stringstream sstream; sstream << GridLogMessage << "["< sig^2 = 0.5. // RealD scale = std::sqrt(0.5); FermionField eta (NumOp.FermionGrid()); FermionField etaOdd (NumOp.FermionRedBlackGrid()); FermionField etaEven(NumOp.FermionRedBlackGrid()); FermionField tmp (NumOp.FermionRedBlackGrid()); gaussian(pRNG,eta); pickCheckerboard(Even,etaEven,eta); pickCheckerboard(Odd,etaOdd,eta); NumOp.ImportGauge(U); DenOp.ImportGauge(U); SchurDifferentiableOperator Mpc(DenOp); SchurDifferentiableOperator Vpc(NumOp); // Odd det factors Mpc.MpcDag(etaOdd,PhiOdd); tmp=zero; ActionSolver(Vpc,PhiOdd,tmp); Vpc.Mpc(tmp,PhiOdd); // Even det factors DenOp.MooeeDag(etaEven,tmp); NumOp.MooeeInvDag(tmp,PhiEven); PhiOdd =PhiOdd*scale; PhiEven=PhiEven*scale; }; ////////////////////////////////////////////////////// // S = phi^dag V (Mdag M)^-1 Vdag phi ////////////////////////////////////////////////////// virtual RealD S(const GaugeField &U) { NumOp.ImportGauge(U); DenOp.ImportGauge(U); SchurDifferentiableOperator Mpc(DenOp); SchurDifferentiableOperator Vpc(NumOp); FermionField X(NumOp.FermionRedBlackGrid()); FermionField Y(NumOp.FermionRedBlackGrid()); Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi X=zero; ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi //Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi // Multiply by Ydag RealD action = real(innerProduct(Y,X)); //RealD action = norm2(Y); // The EE factorised block; normally can replace with zero if det is constant (gauge field indept) // Only really clover term that creates this. Leave the EE portion as a future to do to make most // rapid progresss on DWF for now. // NumOp.MooeeDag(PhiEven,X); DenOp.MooeeInvDag(X,Y); action = action + norm2(Y); return action; }; ////////////////////////////////////////////////////// // dS/du = phi^dag dV (Mdag M)^-1 V^dag phi // - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi // + phi^dag V (Mdag M)^-1 dV^dag phi ////////////////////////////////////////////////////// virtual void deriv(const GaugeField &U,GaugeField & dSdU) { NumOp.ImportGauge(U); DenOp.ImportGauge(U); SchurDifferentiableOperator Mpc(DenOp); SchurDifferentiableOperator Vpc(NumOp); FermionField X(NumOp.FermionRedBlackGrid()); FermionField Y(NumOp.FermionRedBlackGrid()); // This assignment is necessary to be compliant with the HMC grids GaugeField force(dSdU.Grid()); //Y=Vdag phi //X = (Mdag M)^-1 V^dag phi //Y = (Mdag)^-1 V^dag phi Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi X=zero; DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi // phi^dag V (Mdag M)^-1 dV^dag phi Vpc.MpcDagDeriv(force , X, PhiOdd ); dSdU = force; // phi^dag dV (Mdag M)^-1 V^dag phi Vpc.MpcDeriv(force , PhiOdd, X ); dSdU = dSdU+force; // - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi // - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi Mpc.MpcDeriv(force,Y,X); dSdU = dSdU-force; Mpc.MpcDagDeriv(force,X,Y); dSdU = dSdU-force; // FIXME No force contribution from EvenEven assumed here // Needs a fix for clover. assert(NumOp.ConstEE() == 1); assert(DenOp.ConstEE() == 1); dSdU = -dSdU; }; }; NAMESPACE_END(Grid); #endif