#include using namespace Grid; template bool has_correct_group_block_structure(const T& U) { std::cout << GridLogMessage << "Checking the structure is " << std::endl; std::cout << GridLogMessage << "U = ( W X ) " << std::endl; std::cout << GridLogMessage << " ( -X^* W^* ) " << std::endl; std::cout << GridLogMessage << std::endl; const int nsp = Nc / 2; Complex i(0., 1.); for (int c1 = 0; c1 < nsp; c1++) // check on W { for (int c2 = 0; c2 < nsp; c2++) { auto W = PeekIndex(U, c1, c2); auto Wstar = PeekIndex(U, c1 + nsp, c2 + nsp); auto Ww = conjugate(Wstar); auto amizero = sum(W - Ww); auto amizeroo = TensorRemove(amizero); assert(amizeroo.real() < 10e-6); amizeroo *= i; assert(amizeroo.real() < 10e-6); } } for (int c1 = 0; c1 < nsp; c1++) { for (int c2 = 0; c2 < nsp; c2++) { auto X = PeekIndex(U, c1, c2 + nsp); auto minusXstar = PeekIndex(U, c1 + nsp, c2); auto minusXx = conjugate(minusXstar); auto amizero = sum(X + minusXx); auto amizeroo = TensorRemove(amizero); assert(amizeroo.real() < 10e-6); amizeroo *= i; assert(amizeroo.real() < 10e-6); } } return true; }; template bool is_element_of_sp2n_group(const T& U) { LatticeColourMatrixD aux(U.Grid()); LatticeColourMatrixD identity(U.Grid()); identity = 1.0; LatticeColourMatrixD Omega(U.Grid()); Sp::Omega(Omega); std::cout << GridLogMessage << "Check matrix is non-zero " << std::endl; assert(norm2(U) > 1e-8); std::cout << GridLogMessage << "Unitary check" << std::endl; aux = U * adj(U) - identity; std::cout << GridLogMessage << "U adjU - 1 = " << norm2(aux) << std::endl; assert(norm2(aux) < 1e-8); aux = Omega - (U * Omega * transpose(U)); std::cout << GridLogMessage << "Omega - U Omega transpose(U) = " << norm2(aux) << std::endl; assert(norm2(aux) < 1e-8); std::cout << GridLogMessage << "|Det| = " << norm2(Determinant(U)) / U.Grid()->gSites() << std::endl; assert(norm2(Determinant(U)) / U.Grid()->gSites() - 1 < 1e-8); return has_correct_group_block_structure(U); } template void test_group_projections(T U) { RealD Delta = 666.; LatticeColourMatrixD identity(U.Grid()); identity = 1.0; std::cout << GridLogMessage << "# # # #" << std::endl; std::cout << GridLogMessage << "Group" << std::endl; std::cout << GridLogMessage << "# # # #" << std::endl; std::cout << GridLogMessage << std::endl; std::string name = "ProjectOnSpGroup"; std::cout << GridLogMessage << "Testing " << name << std::endl; std::cout << GridLogMessage << "Apply to deformed matrix" << std::endl; U = U + Delta * identity; U = ProjectOnSpGroup(U); assert(is_element_of_sp2n_group(U)); name = "ProjectOnGaugeGroup"; std::cout << GridLogMessage << "Testing " << name << std::endl; std::cout << GridLogMessage << "Apply to deformed matrix" << std::endl; U = U + Delta * identity; Sp::ProjectOnGaugeGroup(U); assert(is_element_of_sp2n_group(U)); name = "ProjectGn"; std::cout << GridLogMessage << "Testing " << name << std::endl; std::cout << GridLogMessage << "Apply to deformed matrix" << std::endl; U = U + Delta * identity; Sp::ProjectGn(U); assert(is_element_of_sp2n_group(U)); } template bool has_correct_algebra_block_structure(const T& U) { const int nsp = Nc / 2; Complex i(0., 1.); std::cout << GridLogMessage << "Checking the structure is " << std::endl; std::cout << GridLogMessage << "U = ( W X ) " << std::endl; std::cout << GridLogMessage << " ( X^* -W^* ) " << std::endl; std::cout << GridLogMessage << std::endl; for (int c1 = 0; c1 < nsp; c1++) // check on W { for (int c2 = 0; c2 < nsp; c2++) { auto W = PeekIndex(U, c1, c2); auto Wstar = PeekIndex(U, c1 + nsp, c2 + nsp); auto Ww = conjugate(Wstar); auto amizero = sum(W + Ww); auto amizeroo = TensorRemove(amizero); assert(amizeroo.real() < 10e-6); amizeroo *= i; assert(amizeroo.real() < 10e-6); } } for (int c1 = 0; c1 < nsp; c1++) { for (int c2 = 0; c2 < nsp; c2++) { auto X = PeekIndex(U, c1, c2 + nsp); auto minusXstar = PeekIndex(U, c1 + nsp, c2); auto minusXx = conjugate(minusXstar); auto amizero = sum(X - minusXx); auto amizeroo = TensorRemove(amizero); assert(amizeroo.real() < 10e-6); amizeroo *= i; assert(amizeroo.real() < 10e-6); } } return true; } template bool is_element_of_sp2n_algebra(T U) { // does explicitly take a copy in order to not spoil the matrix for further // use LatticeColourMatrixD aux(U.Grid()); LatticeColourMatrixD identity(U.Grid()); identity = 1.0; aux = U - adj(U); std::cout << GridLogMessage << "T - Tda = " << norm2(aux) << std::endl; aux = U + adj(U); std::cout << GridLogMessage << "T + Tda = " << norm2(aux) << std::endl; std::cout << GridLogMessage << "Check that Omega U Omega = conj(U)" << std::endl; LatticeColourMatrixD Omega(U.Grid()); Sp::Omega(Omega); aux = Omega * U * Omega - conjugate(U); std::cout << GridLogMessage << "Omega U Omega - conj(U) = " << norm2(aux) << std::endl; assert(norm2(aux) < 1e-8); return has_correct_algebra_block_structure(U); } template void test_algebra_projections(T U) { RealD Delta = 666.; LatticeColourMatrixD tmp(U.Grid()); LatticeColourMatrixD identity(U.Grid()); identity = 1.0; std::cout << GridLogMessage << "# # # #" << std::endl; std::cout << GridLogMessage << "Algebra" << std::endl; std::cout << GridLogMessage << "# # # #" << std::endl; std::cout << GridLogMessage << std::endl; std::string name = "SpTa"; std::cout << GridLogMessage << "Testing " << name << std::endl; std::cout << GridLogMessage << "Apply to deformed matrix" << std::endl; U = U + Delta * identity; U = SpTa(U); assert(is_element_of_sp2n_algebra(U)); name = "TaProj"; std::cout << GridLogMessage << "Testing " << name << std::endl; std::cout << GridLogMessage << "Apply to deformed matrix" << std::endl; U = U + Delta * identity; Sp::taProj(U, tmp); U = tmp; assert(is_element_of_sp2n_algebra(U)); } int main(int argc, char** argv) { Grid_init(&argc, &argv); Coordinate latt_size = GridDefaultLatt(); Coordinate simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd()); Coordinate mpi_layout = GridDefaultMpi(); GridCartesian Grid(latt_size, simd_layout, mpi_layout); LatticeGaugeField Umu(&Grid); LatticeColourMatrixD U(&Grid); // Will test resimplectification-related functionalities (from // ProjectOnGaugeGroup, ProjectOnSpGroup, ProjectGn) and projection on the // algebra (from ProjectSp2nAlgebra) we work with matrices with positive // determinant so detU = 1 even if in principle ProjectOnGaugeGroup and // ProjectOnSpGroup allow for detU=-1 so the checks will be the same for the // three functions NB only ProjectGn is the proper simplectification function std::vector pseeds({1, 2, 3, 4, 5}); GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(pseeds); SU::HotConfiguration(pRNG, Umu); U = PeekIndex(Umu, 0); test_group_projections(U); U = PeekIndex(Umu, 1); test_algebra_projections(U); Grid_finalize(); }