/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MContraction/Baryon.hpp Copyright (C) 2015-2019 Author: Antonin Portelli Author: Felix Erben This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MContraction_Baryon_hpp_ #define Hadrons_MContraction_Baryon_hpp_ #include #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Baryon * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MContraction) class BaryonPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar, std::string, q1_src, std::string, q2_src, std::string, q3_src, std::string, GammaA, std::string, GammaB, /* std::vector, quarks, std::vector, prefactors,*/ std::string, quarks_snk, std::string, quarks_src, int, parity, //=1 std::string, sink, std::string, output); }; template class TBaryon: public Module { public: FERM_TYPE_ALIASES(FImpl1, 1); FERM_TYPE_ALIASES(FImpl2, 2); FERM_TYPE_ALIASES(FImpl3, 3); BASIC_TYPE_ALIASES(ScalarImplCR, Scalar); SINK_TYPE_ALIASES(Scalar); class Result: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(Result, std::vector, corr); }; public: // constructor TBaryon(const std::string name); // destructor virtual ~TBaryon(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); protected: // setup virtual void setup(void); // execution virtual void execute(void); // Which gamma algebra was specified Gamma::Algebra al; }; MODULE_REGISTER_TMP(Baryon, ARG(TBaryon), MContraction); /****************************************************************************** * TBaryon implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TBaryon::TBaryon(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TBaryon::getInput(void) { std::vector input = {par().q1_src, par().q2_src, par().q3_src, par().sink}; return input; } template std::vector TBaryon::getOutput(void) { std::vector out = {}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TBaryon::setup(void) { envTmpLat(LatticeComplex, "c"); envTmpLat(LatticeComplex, "c2"); } // execution /////////////////////////////////////////////////////////////////// template void TBaryon::execute(void) { //std::vector quarks = {"sud","dus"}; //std::vector prefactors = {2.0, 1.0}; std::vector quarks; std::string qq = "sud dus"; quarks = strToVec(qq); std::vector prefactors; std::string pp = "2.0 -1.0"; prefactors = strToVec(pp); int nQ=quarks.size(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ LOG(Message) << prefactors[iQ1]*prefactors[iQ2] << "*<" << quarks[iQ1] << "|" << quarks[iQ2] << ">" << std::endl; } } LOG(Message) << "Computing baryon contraction '" << getName() << "' < " << par().quarks_snk << " | " << par().quarks_src << " > using" << " quarks '" << par().q1_src << "', and a diquark formed of ('" << par().q2_src << "', and '" << par().q3_src << "') at the source and (Gamma^A,Gamma^B) = ( " << par().GammaA << " , " << par().GammaB << " ) and parity " << par().parity << "." << std::endl; envGetTmp(LatticeComplex, c); envGetTmp(LatticeComplex, c2); Result result; int nt = env().getDim(Tp); result.corr.resize(nt); std::vector ggA = strToVec(par().GammaA); Gamma GammaA(ggA[0]); std::vector ggB = strToVec(par().GammaB); Gamma GammaB(ggB[0]); std::vector buf; TComplex cs; TComplex ch; const int parity {par().parity}; const char * quarks_snk{par().quarks_snk.c_str()}; const char * quarks_src{par().quarks_src.c_str()}; if (envHasType(SlicedPropagator1, par().q1_src) and envHasType(SlicedPropagator2, par().q2_src) and envHasType(SlicedPropagator3, par().q3_src)) { auto &q1_src = envGet(SlicedPropagator1, par().q1_src); auto &q2_src = envGet(SlicedPropagator2, par().q2_src); auto &q3_src = envGet(SlicedPropagator3, par().q3_src); LOG(Message) << "(propagator already sinked)" << std::endl; for (unsigned int t = 0; t < buf.size(); ++t) { cs = Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons_Sliced(q1_src[t],q2_src[t],q3_src[t],GammaA,GammaB,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,ch); cs += prefactors[iQ1]*prefactors[iQ2]*ch; } } /* BaryonUtils::ContractBaryons_Sliced(q1_src[t],q2_src[t],q3_src[t],GammaA,GammaB,quarks_snk,quarks_src,parity,cs);*/ result.corr[t] = TensorRemove(cs); } } else { auto &q1_src = envGet(PropagatorField1, par().q1_src); auto &q2_src = envGet(PropagatorField2, par().q2_src); auto &q3_src = envGet(PropagatorField3, par().q3_src); std::string ns; ns = vm().getModuleNamespace(env().getObjectModule(par().sink)); if (ns == "MSource") { c=Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons(q1_src,q2_src,q3_src,GammaA,GammaB,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2); c+=prefactors[iQ1]*prefactors[iQ2]*c2; } } // BaryonUtils::ContractBaryons(q1_src,q2_src,q3_src,GammaA,GammaB,quarks_snk,quarks_src,parity,c); PropagatorField1 &sink = envGet(PropagatorField1, par().sink); auto test = closure(trace(sink*c)); sliceSum(test, buf, Tp); } else if (ns == "MSink") { c=Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons(q1_src,q2_src,q3_src,GammaA,GammaB,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2); c+=prefactors[iQ1]*prefactors[iQ2]*c2; } } //BaryonUtils::ContractBaryons(q1_src,q2_src,q3_src,GammaA,GammaB,quarks_snk,quarks_src,parity,c); SinkFnScalar &sink = envGet(SinkFnScalar, par().sink); buf = sink(c); } for (unsigned int t = 0; t < buf.size(); ++t) { result.corr[t] = TensorRemove(buf[t]); } } saveResult(par().output, "baryon", result); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MContraction_Baryon_hpp_