/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MContraction/Baryon.hpp Copyright (C) 2015-2019 Author: Antonin Portelli Author: Felix Erben This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MContraction_Baryon_hpp_ #define Hadrons_MContraction_Baryon_hpp_ #include #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Baryon * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MContraction) typedef std::pair GammaAB; typedef std::pair GammaABPair; class BaryonPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar, std::string, q1, std::string, q2, std::string, q3, std::string, gammas, std::string, quarks, std::string, prefactors, std::string, parity, std::string, sink, std::string, output); }; template class TBaryon: public Module { public: FERM_TYPE_ALIASES(FImpl1, 1); FERM_TYPE_ALIASES(FImpl2, 2); FERM_TYPE_ALIASES(FImpl3, 3); BASIC_TYPE_ALIASES(ScalarImplCR, Scalar); SINK_TYPE_ALIASES(Scalar); class Metadata: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata, Gamma::Algebra, gammaA_left, Gamma::Algebra, gammaB_left, Gamma::Algebra, gammaA_right, Gamma::Algebra, gammaB_right, std::string, quarks, std::string, prefactors, int, parity); }; typedef Correlator Result; public: // constructor TBaryon(const std::string name); // destructor virtual ~TBaryon(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); virtual void parseGammaString(std::vector &gammaList); protected: // setup virtual void setup(void); // execution virtual void execute(void); // Which gamma algebra was specified Gamma::Algebra al; }; MODULE_REGISTER_TMP(Baryon, ARG(TBaryon), MContraction); /****************************************************************************** * TBaryon implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TBaryon::TBaryon(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TBaryon::getInput(void) { std::vector input = {par().q1, par().q2, par().q3, par().sink}; return input; } template std::vector TBaryon::getOutput(void) { std::vector out = {}; return out; } template void TBaryon::parseGammaString(std::vector &gammaList) { gammaList.clear(); std::string gammaString = par().gammas; //Shorthands for standard baryon operators gammaString = regex_replace(gammaString, std::regex("j12"),"(Identity SigmaXZ)"); gammaString = regex_replace(gammaString, std::regex("j32X"),"(Identity MinusGammaZGamma5)"); gammaString = regex_replace(gammaString, std::regex("j32Y"),"(Identity GammaT)"); gammaString = regex_replace(gammaString, std::regex("j32Z"),"(Identity GammaXGamma5)"); //Shorthands for less common baryon operators gammaString = regex_replace(gammaString, std::regex("j12_alt1"),"(Gamma5 MinusSigmaYT)"); gammaString = regex_replace(gammaString, std::regex("j12_alt2"),"(Identity GammaYGamma5)"); //A single gamma matrix std::regex rex_g("([0-9a-zA-Z]+)"); //The full string we expect std::regex rex("( *\\(( *\\(([0-9a-zA-Z]+) +([0-9a-zA-Z]+) *\\)){2} *\\) *)+"); std::smatch sm; std::regex_match(gammaString, sm, rex); assert(sm[0].matched && "invalid gamma structure."); auto gamma_begin = std::sregex_iterator(gammaString.begin(), gammaString.end(), rex_g); auto gamma_end = std::sregex_iterator(); int nGamma = std::distance(gamma_begin, gamma_end); //couldn't find out how to count the size in the iterator, other than looping through it... /* int nGamma=0; for (std::sregex_iterator i = gamma_begin; i != gamma_end; ++i) { nGamma++; } */ gammaList.resize(nGamma/4); std::vector gS; gS.resize(nGamma); //even more ugly workarounds here... int iG=0; for (std::sregex_iterator i = gamma_begin; i != gamma_end; ++i) { std::smatch match = *i; gS[iG] = match.str(); iG++; } for (int i = 0; i < gammaList.size(); i++){ std::vector gS1 = strToVec(gS[4*i]); std::vector gS2 = strToVec(gS[4*i+1]); std::vector gS3 = strToVec(gS[4*i+2]); std::vector gS4 = strToVec(gS[4*i+3]); gammaList[i].first.first=gS1[0]; gammaList[i].first.second=gS2[0]; gammaList[i].second.first=gS3[0]; gammaList[i].second.second=gS4[0]; } } // setup /////////////////////////////////////////////////////////////////////// template void TBaryon::setup(void) { envTmpLat(LatticeComplex, "c"); envTmpLat(LatticeComplex, "c2"); } // execution /////////////////////////////////////////////////////////////////// template void TBaryon::execute(void) { std::vector quarks = strToVec(par().quarks); std::vector prefactors = strToVec(par().prefactors); int nQ=quarks.size(); const int parity {par().parity.size()>0 ? std::stoi(par().parity) : 1}; std::vector gammaList; parseGammaString(gammaList); assert(prefactors.size()==nQ && "number of prefactors needs to match number of quark-structures."); for (int iQ = 0; iQ < nQ; iQ++) assert(quarks[iQ].size()==3 && "quark-structures must consist of 3 quarks each."); LOG(Message) << "Computing baryon contractions '" << getName() << "'" << std::endl; for (int iQ1 = 0; iQ1 < nQ; iQ1++) for (int iQ2 = 0; iQ2 < nQ; iQ2++) LOG(Message) << prefactors[iQ1]*prefactors[iQ2] << "*<" << quarks[iQ1] << "|" << quarks[iQ2] << ">" << std::endl; LOG(Message) << " using quarks " << par().q1 << "', " << par().q2 << "', and '" << par().q3 << std::endl; for (int iG = 0; iG < gammaList.size(); iG++) LOG(Message) << "' with (Gamma^A,Gamma^B)_left = ( " << gammaList[iG].first.first << " , " << gammaList[iG].first.second << "') and (Gamma^A,Gamma^B)_right = ( " << gammaList[iG].second.first << " , " << gammaList[iG].second.second << ")" << std::endl; LOG(Message) << "and parity " << parity << " using sink " << par().sink << "." << std::endl; envGetTmp(LatticeComplex, c); envGetTmp(LatticeComplex, c2); int nt = env().getDim(Tp); std::vector buf; TComplex cs; TComplex ch; std::vector result; Result r; r.info.parity = parity; r.info.quarks = par().quarks; r.info.prefactors = par().prefactors; if (envHasType(SlicedPropagator1, par().q1) and envHasType(SlicedPropagator2, par().q2) and envHasType(SlicedPropagator3, par().q3)) { auto &q1 = envGet(SlicedPropagator1, par().q1); auto &q2 = envGet(SlicedPropagator2, par().q2); auto &q3 = envGet(SlicedPropagator3, par().q3); for (unsigned int i = 0; i < gammaList.size(); ++i) { r.info.gammaA_left = gammaList[i].first.first; r.info.gammaB_left = gammaList[i].first.second; r.info.gammaA_right = gammaList[i].second.first; r.info.gammaB_right = gammaList[i].second.second; Gamma gAl(gammaList[i].first.first); Gamma gBl(gammaList[i].first.second); Gamma gAr(gammaList[i].second.first); Gamma gBr(gammaList[i].second.second); LOG(Message) << "(propagator already sinked)" << std::endl; r.corr.clear(); for (unsigned int t = 0; t < buf.size(); ++t) { cs = Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons_Sliced(q1[t],q2[t],q3[t],gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,ch); cs += prefactors[iQ1]*prefactors[iQ2]*ch; } } r.corr.push_back(TensorRemove(cs)); } result.push_back(r); } } else { auto &q1 = envGet(PropagatorField1, par().q1); auto &q2 = envGet(PropagatorField2, par().q2); auto &q3 = envGet(PropagatorField3, par().q3); for (unsigned int i = 0; i < gammaList.size(); ++i) { r.info.gammaA_left = gammaList[i].first.first; r.info.gammaB_left = gammaList[i].first.second; r.info.gammaA_right = gammaList[i].second.first; r.info.gammaB_right = gammaList[i].second.second; Gamma gAl(gammaList[i].first.first); Gamma gBl(gammaList[i].first.second); Gamma gAr(gammaList[i].second.first); Gamma gBr(gammaList[i].second.second); std::string ns; ns = vm().getModuleNamespace(env().getObjectModule(par().sink)); if (ns == "MSource") { c=Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons(q1,q2,q3,gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2); c+=prefactors[iQ1]*prefactors[iQ2]*c2; } } PropagatorField1 &sink = envGet(PropagatorField1, par().sink); auto test = closure(trace(sink*c)); sliceSum(test, buf, Tp); } else if (ns == "MSink") { c=Zero(); for (int iQ1 = 0; iQ1 < nQ; iQ1++){ for (int iQ2 = 0; iQ2 < nQ; iQ2++){ BaryonUtils::ContractBaryons(q1,q2,q3,gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2); c+=prefactors[iQ1]*prefactors[iQ2]*c2; } } SinkFnScalar &sink = envGet(SinkFnScalar, par().sink); buf = sink(c); } r.corr.clear(); for (unsigned int t = 0; t < buf.size(); ++t) { r.corr.push_back(TensorRemove(buf[t])); } result.push_back(r); } } saveResult(par().output, "baryon", result); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MContraction_Baryon_hpp_