#include namespace Grid { namespace QCD { // S-direction is INNERMOST and takes no part in the parity. const std::vector WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4}); const std::vector WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1}); int WilsonFermion5DStatic::HandOptDslash; // 5d lattice for DWF. template WilsonFermion5D::WilsonFermion5D(GaugeField &_Umu, GridCartesian &FiveDimGrid, GridRedBlackCartesian &FiveDimRedBlackGrid, GridCartesian &FourDimGrid, GridRedBlackCartesian &FourDimRedBlackGrid, RealD _M5) : _FiveDimGrid(&FiveDimGrid), _FiveDimRedBlackGrid(&FiveDimRedBlackGrid), _FourDimGrid(&FourDimGrid), _FourDimRedBlackGrid(&FourDimRedBlackGrid), Stencil (_FiveDimGrid,npoint,Even,directions,displacements), StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements), // source is Even StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements), // source is Odd M5(_M5), Umu(_FourDimGrid), UmuEven(_FourDimRedBlackGrid), UmuOdd (_FourDimRedBlackGrid), Lebesgue(_FourDimGrid), LebesgueEvenOdd(_FourDimRedBlackGrid) { // some assertions assert(FiveDimGrid._ndimension==5); assert(FourDimGrid._ndimension==4); assert(FiveDimRedBlackGrid._ndimension==5); assert(FourDimRedBlackGrid._ndimension==4); assert(FiveDimRedBlackGrid._checker_dim==1); // Dimension zero of the five-d is the Ls direction Ls=FiveDimGrid._fdimensions[0]; assert(FiveDimRedBlackGrid._fdimensions[0]==Ls); assert(FiveDimRedBlackGrid._processors[0] ==1); assert(FiveDimRedBlackGrid._simd_layout[0]==1); assert(FiveDimGrid._processors[0] ==1); assert(FiveDimGrid._simd_layout[0] ==1); // Other dimensions must match the decomposition of the four-D fields for(int d=0;d<4;d++){ assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]); assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]); assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]); assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]); assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]); assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]); assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]); assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]); assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]); } // Allocate the required comms buffer comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO ImportGauge(_Umu); } template void WilsonFermion5D::ImportGauge(const GaugeField &_Umu) { Impl::DoubleStore(GaugeGrid(),Umu,_Umu); pickCheckerboard(Even,UmuEven,Umu); pickCheckerboard(Odd ,UmuOdd,Umu); } template void WilsonFermion5D::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp) { int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil // we drop off the innermost fifth dimension // assert( (disp==1)||(disp==-1) ); // assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t; Compressor compressor(DaggerNo); Stencil.HaloExchange(in,comm_buf,compressor); int skip = (disp==1) ? 0 : 1; int dirdisp = dir+skip*4; assert(dirdisp<=7); assert(dirdisp>=0); PARALLEL_FOR_LOOP for(int ss=0;ssoSites();ss++){ for(int s=0;s void WilsonFermion5D::DerivInternal(CartesianStencil & st, DoubledGaugeField & U, GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { assert((dag==DaggerNo) ||(dag==DaggerYes)); conformable(st._grid,A._grid); conformable(st._grid,B._grid); Compressor compressor(dag); GaugeLinkField tmp(mat._grid); FermionField Btilde(B._grid); FermionField Atilde(B._grid); st.HaloExchange(B,comm_buf,compressor); Atilde=A; for(int mu=0;muoSites();sss++){ for(int s=0;soSites()); assert ( sU< U._grid->oSites()); Kernels::DiracOptDhopDir(st,U,comm_buf,sF,sU,B,Btilde,mu,gamma); //////////////////////////// // spin trace outer product //////////////////////////// } } Impl::InsertForce(mat,Btilde,A,mu); /* tmp = zero; for(int sss=0;sssoSites();sss++){ tmp[sU] = tmp[sU]+ traceIndex(outerProduct(Btilde[sF],Atilde[sF])); // ordering here } PokeIndex(mat,tmp,mu); */ } } template void WilsonFermion5D::DhopDeriv( GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { conformable(A._grid,FermionGrid()); conformable(A._grid,B._grid); conformable(GaugeGrid(),mat._grid); mat.checkerboard = A.checkerboard; DerivInternal(Stencil,Umu,mat,A,B,dag); } template void WilsonFermion5D::DhopDerivEO(GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { conformable(A._grid,FermionRedBlackGrid()); conformable(GaugeRedBlackGrid(),mat._grid); conformable(A._grid,B._grid); assert(B.checkerboard==Odd); assert(A.checkerboard==Even); mat.checkerboard = Even; DerivInternal(StencilOdd,UmuEven,mat,A,B,dag); } template void WilsonFermion5D::DhopDerivOE(GaugeField &mat, const FermionField &A, const FermionField &B, int dag) { conformable(A._grid,FermionRedBlackGrid()); conformable(GaugeRedBlackGrid(),mat._grid); conformable(A._grid,B._grid); assert(B.checkerboard==Even); assert(A.checkerboard==Odd); mat.checkerboard = Odd; DerivInternal(StencilEven,UmuOdd,mat,A,B,dag); } template void WilsonFermion5D::DhopInternal(CartesianStencil & st, LebesgueOrder &lo, DoubledGaugeField & U, const FermionField &in, FermionField &out,int dag) { // assert((dag==DaggerNo) ||(dag==DaggerYes)); Compressor compressor(dag); st.HaloExchange(in,comm_buf,compressor); // Dhop takes the 4d grid from U, and makes a 5d index for fermion // Not loop ordering and data layout. // Designed to create // - per thread reuse in L1 cache for U // - 8 linear access unit stride streams per thread for Fermion for hw prefetchable. if ( dag == DaggerYes ) { if( this->HandOptDslash ) { PARALLEL_FOR_LOOP for(int ss=0;ssoSites();ss++){ for(int s=0;soSites();ss++){ { int sd; for(sd=0;sdHandOptDslash ) { PARALLEL_FOR_LOOP for(int ss=0;ssoSites();ss++){ for(int s=0;soSites();ss++){ for(int s=0;s void WilsonFermion5D::DhopOE(const FermionField &in, FermionField &out,int dag) { conformable(in._grid,FermionRedBlackGrid()); // verifies half grid conformable(in._grid,out._grid); // drops the cb check assert(in.checkerboard==Even); out.checkerboard = Odd; DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag); } template void WilsonFermion5D::DhopEO(const FermionField &in, FermionField &out,int dag) { conformable(in._grid,FermionRedBlackGrid()); // verifies half grid conformable(in._grid,out._grid); // drops the cb check assert(in.checkerboard==Odd); out.checkerboard = Even; DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag); } template void WilsonFermion5D::Dhop(const FermionField &in, FermionField &out,int dag) { conformable(in._grid,FermionGrid()); // verifies full grid conformable(in._grid,out._grid); out.checkerboard = in.checkerboard; DhopInternal(Stencil,Lebesgue,Umu,in,out,dag); } template void WilsonFermion5D::DW(const FermionField &in, FermionField &out,int dag) { out.checkerboard=in.checkerboard; Dhop(in,out,dag); // -0.5 is included axpy(out,4.0-M5,in,out); } FermOpTemplateInstantiate(WilsonFermion5D); }}