/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MDistil/Distil.hpp Copyright (C) 2015-2019 Author: Felix Erben Author: Michael Marshall This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MDistil_Distil_hpp_ #define Hadrons_MDistil_Distil_hpp_ #include #include #include /****************************************************************************** This potentially belongs in CartesianCommunicator Turns out I don't actually need this when running inside hadrons ******************************************************************************/ BEGIN_MODULE_NAMESPACE(Grid) inline void SliceShare( GridBase * gridLowDim, GridBase * gridHighDim, void * Buffer, int BufferSize ) { // Work out which dimension is the spread-out dimension assert(gridLowDim); assert(gridHighDim); const int iNumDims{(const int)gridHighDim->_gdimensions.size()}; assert(iNumDims == gridLowDim->_gdimensions.size()); int dimSpreadOut = -1; std::vector coor(iNumDims); for( int i = 0 ; i < iNumDims ; i++ ) { coor[i] = gridHighDim->_processor_coor[i]; if( gridLowDim->_gdimensions[i] != gridHighDim->_gdimensions[i] ) { assert( dimSpreadOut == -1 ); assert( gridLowDim->_processors[i] == 1 ); // easiest assumption to make for now dimSpreadOut = i; } } if( dimSpreadOut != -1 && gridHighDim->_processors[dimSpreadOut] != gridLowDim->_processors[dimSpreadOut] ) { // Make sure the same number of data elements exist on each slice const int NumSlices{gridHighDim->_processors[dimSpreadOut] / gridLowDim->_processors[dimSpreadOut]}; assert(gridHighDim->_processors[dimSpreadOut] == gridLowDim->_processors[dimSpreadOut] * NumSlices); const int SliceSize{BufferSize/NumSlices}; //CCC_DEBUG_DUMP(Buffer, NumSlices, SliceSize); assert(BufferSize == SliceSize * NumSlices); //#ifndef USE_LOCAL_SLICES // assert(0); // Can't do this without MPI (should really test whether MPI is defined) //#else const auto MyRank{gridHighDim->ThisRank()}; std::vector reqs(0); int MySlice{coor[dimSpreadOut]}; char * const _buffer{(char *)Buffer}; char * const MyData{_buffer + MySlice * SliceSize}; for(int i = 1; i < NumSlices ; i++ ){ int SendSlice = ( MySlice + i ) % NumSlices; int RecvSlice = ( MySlice - i + NumSlices ) % NumSlices; char * const RecvData{_buffer + RecvSlice * SliceSize}; coor[dimSpreadOut] = SendSlice; const auto SendRank{gridHighDim->RankFromProcessorCoor(coor)}; coor[dimSpreadOut] = RecvSlice; const auto RecvRank{gridHighDim->RankFromProcessorCoor(coor)}; std::cout << GridLogMessage << "Send slice " << MySlice << " (" << MyRank << ") to " << SendSlice << " (" << SendRank << "), receive slice from " << RecvSlice << " (" << RecvRank << ")" << std::endl; gridHighDim->SendToRecvFromBegin(reqs,MyData,SendRank,RecvData,RecvRank,SliceSize); //memcpy(RecvData,MyData,SliceSize); // Debug } gridHighDim->SendToRecvFromComplete(reqs); std::cout << GridLogMessage << "Slice data shared." << std::endl; //CCC_DEBUG_DUMP(Buffer, NumSlices, SliceSize); //#endif } } /************************************************************************************* -Grad^2 (Peardon, 2009, pg 2, equation 3) Field Type of field the operator will be applied to GaugeField Gauge field the operator will smear using TODO CANDIDATE for integration into laplacian operator should just require adding number of dimensions to act on to constructor, where the default=all dimensions, but we could specify 3 spatial dimensions *************************************************************************************/ template class LinOpPeardonNabla : public LinearOperatorBase, public LinearFunction { typedef typename GaugeField::vector_type vCoeff_t; protected: // I don't really mind if _gf is messed with ... so make this public? //GaugeField & _gf; int nd; // number of spatial dimensions std::vector > > U; public: // Construct this operator given a gauge field and the number of dimensions it should act on LinOpPeardonNabla( GaugeField& gf, int dimSpatial = Grid::QCD::Tdir ) : /*_gf(gf),*/ nd{dimSpatial} { assert(dimSpatial>=1); for( int mu = 0 ; mu < nd ; mu++ ) U.push_back(PeekIndex(gf,mu)); } // Apply this operator to "in", return result in "out" void operator()(const Field& in, Field& out) { assert( nd <= in._grid->Nd() ); conformable( in, out ); out = ( ( Real ) ( 2 * nd ) ) * in; Field _tmp(in._grid); typedef typename GaugeField::vector_type vCoeff_t; //Lattice > U(in._grid); for( int mu = 0 ; mu < nd ; mu++ ) { //U = PeekIndex(_gf,mu); out -= U[mu] * Cshift( in, mu, 1); _tmp = adj( U[mu] ) * in; out -= Cshift(_tmp,mu,-1); } } void OpDiag (const Field &in, Field &out) { assert(0); }; void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }; void Op (const Field &in, Field &out) { assert(0); }; void AdjOp (const Field &in, Field &out) { assert(0); }; void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) { assert(0); }; void HermOp(const Field &in, Field &out) { operator()(in,out); }; }; template class LinOpPeardonNablaHerm : public LinearFunction { public: OperatorFunction & _poly; LinearOperatorBase &_Linop; LinOpPeardonNablaHerm(OperatorFunction & poly,LinearOperatorBase& linop) : _poly(poly), _Linop(linop) { } void operator()(const Field& in, Field& out) { _poly(_Linop,in,out); } }; END_MODULE_NAMESPACE // Grid /****************************************************************************** Common elements for distillation ******************************************************************************/ BEGIN_HADRONS_NAMESPACE BEGIN_MODULE_NAMESPACE(MDistil) typedef Grid::Hadrons::EigenPack DistilEP; typedef std::vector > > DistilNoises; /****************************************************************************** Make a lower dimensional grid ******************************************************************************/ inline GridCartesian * MakeLowerDimGrid( GridCartesian * gridHD ) { //LOG(Message) << "MakeLowerDimGrid() begin" << std::endl; int nd{static_cast(gridHD->_ndimension)}; std::vector latt_size = gridHD->_gdimensions; latt_size[nd-1] = 1; std::vector simd_layout = GridDefaultSimd(nd-1, vComplex::Nsimd()); simd_layout.push_back( 1 ); std::vector mpi_layout = gridHD->_processors; mpi_layout[nd-1] = 1; GridCartesian * gridLD = new GridCartesian(latt_size,simd_layout,mpi_layout,*gridHD); //LOG(Message) << "MakeLowerDimGrid() end" << std::endl; return gridLD; } /****************************************************************************** Perambulator object ******************************************************************************/ template class Perambulator : public Eigen::Tensor { public: template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Perambulator(Eigen::Index firstDimension, IndexTypes... otherDimensions) : Eigen::Tensor(firstDimension, otherDimensions...) { // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices_, YOU_MADE_A_PROGRAMMING_MISTAKE) } inline void WriteTemporary(const std::string &FileName){} // Share data for timeslices we calculated with other nodes inline void SliceShare( GridCartesian * gridLowDim, GridCartesian * gridHighDim ) { //Grid::SliceShare( gridLowDim, gridHighDim, data(), (int) (size() * sizeof(Scalar_))); } }; /************************************************************************************* Rotate eigenvectors into our phase convention First component of first eigenvector is real and positive *************************************************************************************/ inline void RotateEigen(std::vector & evec) { ColourVector cv0; auto grid = evec[0]._grid; std::vector siteFirst(grid->Nd(),0); peekSite(cv0, evec[0], siteFirst); auto & cplx0 = cv0()()(0); if( std::imag(cplx0) == 0 ) std::cout << GridLogMessage << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl; else { const auto cplx0_mag{std::abs(cplx0)}; const auto phase{std::conj(cplx0 / cplx0_mag)}; std::cout << GridLogMessage << "RotateEigen() : Site 0 : |" << cplx0 << "|=" << cplx0_mag << " => phase=" << (std::arg(phase) / 3.14159265) << " pi" << std::endl; { // TODO: Only really needed on the master slice for( int k = 0 ; k < evec.size() ; k++ ) evec[k] *= phase; if(grid->IsBoss()){ for( int c = 0 ; c < Nc ; c++ ) cv0()()(c) *= phase; cplx0.imag(0); // This assumes phase convention is real, positive (so I get rid of rounding error) //pokeSite(cv0, evec[0], siteFirst); pokeLocalSite(cv0, evec[0], siteFirst); } } } } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MDistil_Distil_hpp_