/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.cc Copyright (C) 2017 Author: Peter Boyle Author: Peter Boyle Author: Peter Boyle Author: paboyle Author: David Murphy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include NAMESPACE_BEGIN(Grid); template MobiusEOFAFermion::MobiusEOFAFermion( GaugeField &_Umu, GridCartesian &FiveDimGrid, GridRedBlackCartesian &FiveDimRedBlackGrid, GridCartesian &FourDimGrid, GridRedBlackCartesian &FourDimRedBlackGrid, RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm, RealD _M5, RealD _b, RealD _c, const ImplParams &p) : AbstractEOFAFermion(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3, _shift, _pm, _M5, _b, _c, p) { int Ls = this->Ls; RealD eps = 1.0; Approx::zolotarev_data *zdata = Approx::higham(eps, this->Ls); assert(zdata->n == this->Ls); std::cout << GridLogMessage << "MobiusEOFAFermion (b=" << _b << ",c=" << _c << ") with Ls=" << Ls << std::endl; this->SetCoefficientsTanh(zdata, _b, _c); std::cout << GridLogMessage << "EOFA parameters: (mq1=" << _mq1 << ",mq2=" << _mq2 << ",mq3=" << _mq3 << ",shift=" << _shift << ",pm=" << _pm << ")" << std::endl; Approx::zolotarev_free(zdata); if(_shift != 0.0){ SetCoefficientsPrecondShiftOps(); } else { Mooee_shift.resize(Ls, 0.0); MooeeInv_shift_lc.resize(Ls, 0.0); MooeeInv_shift_norm.resize(Ls, 0.0); MooeeInvDag_shift_lc.resize(Ls, 0.0); MooeeInvDag_shift_norm.resize(Ls, 0.0); } } /**************************************************************** * Additional EOFA operators only called outside the inverter. * Since speed is not essential, simple axpby-style * implementations should be fine. ***************************************************************/ template void MobiusEOFAFermion::Omega(const FermionField& psi, FermionField& Din, int sign, int dag) { int Ls = this->Ls; RealD alpha = this->alpha; Din = Zero(); if((sign == 1) && (dag == 0)) { // \Omega_{+} for(int s=0; s void MobiusEOFAFermion::Dtilde(const FermionField& psi, FermionField& chi) { int Ls = this->Ls; RealD b = 0.5 * ( 1.0 + this->alpha ); RealD c = 0.5 * ( 1.0 - this->alpha ); RealD mq1 = this->mq1; for(int s=0; s void MobiusEOFAFermion::DtildeInv(const FermionField& psi, FermionField& chi) { int Ls = this->Ls; RealD m = this->mq1; RealD c = 0.5 * this->alpha; RealD d = 0.5; RealD DtInv_p(0.0), DtInv_m(0.0); RealD N = std::pow(c+d,Ls) + m*std::pow(c-d,Ls); FermionField tmp(this->FermionGrid()); for(int s=0; s sp) ? 0.0 : std::pow(-1.0,sp-s) * std::pow(c-d,sp-s) / std::pow(c+d,sp-s+1); if(sp == 0){ axpby_ssp_pplus (tmp, 0.0, tmp, DtInv_p, psi, s, sp); axpby_ssp_pminus(tmp, 0.0, tmp, DtInv_m, psi, s, sp); } else { axpby_ssp_pplus (tmp, 1.0, tmp, DtInv_p, psi, s, sp); axpby_ssp_pminus(tmp, 1.0, tmp, DtInv_m, psi, s, sp); } }} } /*****************************************************************************************************/ template RealD MobiusEOFAFermion::M(const FermionField& psi, FermionField& chi) { FermionField Din(psi.Grid()); this->Meooe5D(psi, Din); this->DW(Din, chi, DaggerNo); axpby(chi, 1.0, 1.0, chi, psi); this->M5D(psi, chi); return(norm2(chi)); } template RealD MobiusEOFAFermion::Mdag(const FermionField& psi, FermionField& chi) { FermionField Din(psi.Grid()); this->DW(psi, Din, DaggerYes); this->MeooeDag5D(Din, chi); this->M5Ddag(psi, chi); axpby(chi, 1.0, 1.0, chi, psi); return(norm2(chi)); } /******************************************************************** * Performance critical fermion operators called inside the inverter ********************************************************************/ template void MobiusEOFAFermion::M5D(const FermionField& psi, FermionField& chi) { int Ls = this->Ls; std::vector diag(Ls,1.0); std::vector upper(Ls,-1.0); upper[Ls-1] = this->mq1; std::vector lower(Ls,-1.0); lower[0] = this->mq1; // no shift term if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); } // fused M + shift operation else{ this->M5D_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); } } template void MobiusEOFAFermion::M5Ddag(const FermionField& psi, FermionField& chi) { int Ls = this->Ls; std::vector diag(Ls,1.0); std::vector upper(Ls,-1.0); upper[Ls-1] = this->mq1; std::vector lower(Ls,-1.0); lower[0] = this->mq1; // no shift term if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); } // fused M + shift operation else{ this->M5Ddag_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); } } // half checkerboard operations template void MobiusEOFAFermion::Mooee(const FermionField& psi, FermionField& chi) { int Ls = this->Ls; // coefficients of Mooee std::vector diag = this->bee; std::vector upper(Ls); std::vector lower(Ls); for(int s=0; scee[s]; lower[s] = -this->cee[s]; } upper[Ls-1] *= -this->mq1; lower[0] *= -this->mq1; // no shift term if(this->shift == 0.0){ this->M5D(psi, psi, chi, lower, diag, upper); } // fused M + shift operation else { this->M5D_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); } } template void MobiusEOFAFermion::MooeeDag(const FermionField& psi, FermionField& chi) { int Ls = this->Ls; // coefficients of MooeeDag std::vector diag = this->bee; std::vector upper(Ls); std::vector lower(Ls); for(int s=0; scee[s+1]; lower[s] = this->mq1*this->cee[Ls-1]; } else if(s==(Ls-1)) { upper[s] = this->mq1*this->cee[0]; lower[s] = -this->cee[s-1]; } else { upper[s] = -this->cee[s+1]; lower[s] = -this->cee[s-1]; } } // no shift term if(this->shift == 0.0){ this->M5Ddag(psi, psi, chi, lower, diag, upper); } // fused M + shift operation else{ this->M5Ddag_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); } } /****************************************************************************************/ // Computes coefficients for applying Cayley preconditioned shift operators // (Mooee + \Delta) --> Mooee_shift // (Mooee + \Delta)^{-1} --> MooeeInv_shift_lc, MooeeInv_shift_norm // (Mooee + \Delta)^{-dag} --> MooeeInvDag_shift_lc, MooeeInvDag_shift_norm // For the latter two cases, the operation takes the form // [ (Mooee + \Delta)^{-1} \psi ]_{i} = Mooee_{ij} \psi_{j} + // ( MooeeInv_shift_norm )_{i} ( \sum_{j} [ MooeeInv_shift_lc ]_{j} P_{pm} \psi_{j} ) template void MobiusEOFAFermion::SetCoefficientsPrecondShiftOps() { int Ls = this->Ls; int pm = this->pm; RealD alpha = this->alpha; RealD k = this->k; RealD mq1 = this->mq1; RealD shift = this->shift; // Initialize Mooee_shift.resize(Ls); MooeeInv_shift_lc.resize(Ls); MooeeInv_shift_norm.resize(Ls); MooeeInvDag_shift_lc.resize(Ls); MooeeInvDag_shift_norm.resize(Ls); // Construct Mooee_shift int idx(0); Coeff_t N = ( (pm == 1) ? 1.0 : -1.0 ) * (2.0*shift*k) * ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) ); for(int s=0; s d = Mooee_shift; std::vector u(Ls,0.0); std::vector y(Ls,0.0); std::vector q(Ls,0.0); if(pm == 1){ u[0] = 1.0; } else{ u[Ls-1] = 1.0; } // Tridiagonal matrix algorithm + Sherman-Morrison formula // // We solve // ( Mooee' + u \otimes v ) MooeeInvDag_shift_lc = Mooee_shift // where Mooee' is the tridiagonal part of Mooee_{+}, and // u = (1,0,...,0) and v = (0,...,0,mq1*cee[0]) are chosen // so that the outer-product u \otimes v gives the (0,Ls-1) // entry of Mooee_{+}. // // We do this as two solves: Mooee'*y = d and Mooee'*q = u, // and then construct the solution to the original system // MooeeInvDag_shift_lc = y - / ( 1 + ) q if(pm == 1){ for(int s=1; scee[s] / this->bee[s-1]; d[s] -= m*d[s-1]; u[s] -= m*u[s-1]; } } y[Ls-1] = d[Ls-1] / this->bee[Ls-1]; q[Ls-1] = u[Ls-1] / this->bee[Ls-1]; for(int s=Ls-2; s>=0; --s){ if(pm == 1){ y[s] = d[s] / this->bee[s]; q[s] = u[s] / this->bee[s]; } else { y[s] = ( d[s] + this->cee[s]*y[s+1] ) / this->bee[s]; q[s] = ( u[s] + this->cee[s]*q[s+1] ) / this->bee[s]; } } // Construct MooeeInvDag_shift_lc for(int s=0; scee[0]*y[Ls-1] / (1.0+mq1*this->cee[0]*q[Ls-1]) * q[s]; } else { MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[Ls-1]*y[0] / (1.0+mq1*this->cee[Ls-1]*q[0]) * q[s]; } } // Compute remaining coefficients N = (pm == 1) ? (1.0 + MooeeInvDag_shift_lc[Ls-1]) : (1.0 + MooeeInvDag_shift_lc[0]); for(int s=0; sbee[s],s) * pow(this->cee[s],Ls-1-s); } else { MooeeInv_shift_lc[s] = pow(this->bee[s],Ls-1-s) * pow(this->cee[s],s); } // MooeeInv_shift_norm MooeeInv_shift_norm[s] = -MooeeInvDag_shift_lc[s] / ( pow(this->bee[s],Ls) + mq1*pow(this->cee[s],Ls) ) / N; // MooeeInvDag_shift_norm if(pm == 1){ MooeeInvDag_shift_norm[s] = -pow(this->bee[s],s) * pow(this->cee[s],(Ls-1-s)) / ( pow(this->bee[s],Ls) + mq1*pow(this->cee[s],Ls) ) / N; } else{ MooeeInvDag_shift_norm[s] = -pow(this->bee[s],(Ls-1-s)) * pow(this->cee[s],s) / ( pow(this->bee[s],Ls) + mq1*pow(this->cee[s],Ls) ) / N; } } } } // Recompute coefficients for a different value of shift constant template void MobiusEOFAFermion::RefreshShiftCoefficients(RealD new_shift) { this->shift = new_shift; if(new_shift != 0.0){ SetCoefficientsPrecondShiftOps(); } else { int Ls = this->Ls; Mooee_shift.resize(Ls,0.0); MooeeInv_shift_lc.resize(Ls,0.0); MooeeInv_shift_norm.resize(Ls,0.0); MooeeInvDag_shift_lc.resize(Ls,0.0); MooeeInvDag_shift_norm.resize(Ls,0.0); } } template void MobiusEOFAFermion::MooeeInternalCompute(int dag, int inv, Vector >& Matp, Vector >& Matm) { int Ls = this->Ls; GridBase* grid = this->FermionRedBlackGrid(); int LLs = grid->_rdimensions[0]; if(LLs == Ls){ return; } // Not vectorised in 5th direction Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls); Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls); for(int s=0; sbee[s]; Pminus(s,s) = this->bee[s]; } for(int s=0; scee[s]; Pplus(s+1,s) = -this->cee[s+1]; } Pplus (0,Ls-1) = this->mq1*this->cee[0]; Pminus(Ls-1,0) = this->mq1*this->cee[Ls-1]; if(this->shift != 0.0){ RealD c = 0.5 * this->alpha; RealD d = 0.5; RealD N = this->shift * this->k * ( std::pow(c+d,Ls) + this->mq1*std::pow(c-d,Ls) ); if(this->pm == 1) { for(int s=0; s::iscomplex()) { sp[l] = PplusMat (l*istride+s1*ostride,s2); sm[l] = PminusMat(l*istride+s1*ostride,s2); } else { // if real scalar_type tmp; tmp = PplusMat (l*istride+s1*ostride,s2); sp[l] = scalar_type(tmp.real(),tmp.real()); tmp = PminusMat(l*istride+s1*ostride,s2); sm[l] = scalar_type(tmp.real(),tmp.real()); } } Matp[LLs*s2+s1] = Vp; Matm[LLs*s2+s1] = Vm; }} } FermOpTemplateInstantiate(MobiusEOFAFermion); GparityFermOpTemplateInstantiate(MobiusEOFAFermion); NAMESPACE_END(Grid);