/* @file stoutSmear.hpp @brief Declares Stout smearing class */ #ifndef STOUT_SMEAR_ #define STOUT_SMEAR_ NAMESPACE_BEGIN(Grid); /*! @brief Stout smearing of link variable. */ template class Smear_Stout : public Smear { private: const Smear* SmearBase; public: INHERIT_GIMPL_TYPES(Gimpl) Smear_Stout(Smear* base) : SmearBase(base) { assert(Nc == 3);// "Stout smearing currently implemented only for Nc==3"); } /*! Default constructor */ Smear_Stout(double rho = 1.0) : SmearBase(new Smear_APE(rho)) { assert(Nc == 3);// "Stout smearing currently implemented only for Nc==3"); } ~Smear_Stout() {} // delete SmearBase... void smear(GaugeField& u_smr, const GaugeField& U) const { GaugeField C(U.Grid()); GaugeLinkField tmp(U.Grid()), iq_mu(U.Grid()), Umu(U.Grid()); std::cout << GridLogDebug << "Stout smearing started\n"; // Smear the configurations SmearBase->smear(C, U); for (int mu = 0; mu < Nd; mu++) { tmp = peekLorentz(C, mu); Umu = peekLorentz(U, mu); iq_mu = Ta( tmp * adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper exponentiate_iQ(tmp, iq_mu); pokeLorentz(u_smr, tmp * Umu, mu); // u_smr = exp(iQ_mu)*U_mu } std::cout << GridLogDebug << "Stout smearing completed\n"; }; void derivative(GaugeField& SigmaTerm, const GaugeField& iLambda, const GaugeField& Gauge) const { SmearBase->derivative(SigmaTerm, iLambda, Gauge); }; void BaseSmear(GaugeField& C, const GaugeField& U) const { SmearBase->smear(C, U); }; // Repetion of code here (use the Tensor_exp.h function) void exponentiate_iQ(GaugeLinkField& e_iQ, const GaugeLinkField& iQ) const { // Put this outside // only valid for SU(3) matrices // only one Lorentz direction at a time // notice that it actually computes // exp ( input matrix ) // the i sign is coming from outside // input matrix is anti-hermitian NOT hermitian GridBase* grid = iQ.Grid(); GaugeLinkField unity(grid); unity = 1.0; GaugeLinkField iQ2(grid), iQ3(grid); LatticeComplex u(grid), w(grid); LatticeComplex f0(grid), f1(grid), f2(grid); iQ2 = iQ * iQ; iQ3 = iQ * iQ2; set_uw(u, w, iQ2, iQ3); set_fj(f0, f1, f2, u, w); e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2; }; void set_uw(LatticeComplex& u, LatticeComplex& w, GaugeLinkField& iQ2, GaugeLinkField& iQ3) const { Complex one_over_three = 1.0 / 3.0; Complex one_over_two = 1.0 / 2.0; GridBase* grid = u.Grid(); LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid); // sign in c0 from the conventions on the Ta c0 = -imag(trace(iQ3)) * one_over_three; c1 = -real(trace(iQ2)) * one_over_two; // Cayley Hamilton checks to machine precision, tested tmp = c1 * one_over_three; c0max = 2.0 * pow(tmp, 1.5); theta = acos(c0 / c0max) * one_over_three; // divide by three here, now leave as it is u = sqrt(tmp) * cos(theta); w = sqrt(c1) * sin(theta); } void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2, const LatticeComplex& u, const LatticeComplex& w) const { GridBase* grid = u.Grid(); LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid); LatticeComplex fden(grid); LatticeComplex h0(grid), h1(grid), h2(grid); LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid); LatticeComplex unity(grid); unity = 1.0; xi0 = func_xi0(w); u2 = u * u; w2 = w * w; cosw = cos(w); ixi0 = timesI(xi0); emiu = cos(u) - timesI(sin(u)); e2iu = cos(2.0 * u) + timesI(sin(2.0 * u)); h0 = e2iu * (u2 - w2) + emiu * ((8.0 * u2 * cosw) + (2.0 * u * (3.0 * u2 + w2) * ixi0)); h1 = e2iu * (2.0 * u) - emiu * ((2.0 * u * cosw) - (3.0 * u2 - w2) * ixi0); h2 = e2iu - emiu * (cosw + (3.0 * u) * ixi0); fden = unity / (9.0 * u2 - w2); // reals f0 = h0 * fden; f1 = h1 * fden; f2 = h2 * fden; } LatticeComplex func_xi0(const LatticeComplex& w) const { // Define a function to do the check // if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small: // "<< w <<"\n"; return sin(w) / w; } LatticeComplex func_xi1(const LatticeComplex& w) const { // Define a function to do the check // if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small: // "<< w <<"\n"; return cos(w) / (w * w) - sin(w) / (w * w * w); } }; NAMESPACE_END(Grid); #endif