#ifndef GRID_STENCIL_H #define GRID_STENCIL_H #include // subdir aggregate ////////////////////////////////////////////////////////////////////////////////////////// // Must not lose sight that goal is to be able to construct really efficient // gather to a point stencil code. CSHIFT is not the best way, so need // additional stencil support. // // Stencil based code will pre-exchange haloes and use a table lookup for neighbours. // This will be done with generality to allow easier efficient implementations. // Overlap of comms and compute could be semi-automated by tabulating off-node connected, // and // // Lattice could also allocate haloes which get used for stencil code. // // Grid could create a neighbour index table for a given stencil. // // Could also implement CovariantCshift, to fuse the loops and enhance performance. // // // General stencil computation: // // Generic services // 0) Prebuild neighbour tables // 1) Compute sizes of all haloes/comms buffers; allocate them. // // 2) Gather all faces, and communicate. // 3) Loop over result sites, giving nbr index/offnode info for each // // Could take a // SpinProjectFaces // start comms // complete comms // Reconstruct Umu // // Approach. // ////////////////////////////////////////////////////////////////////////////////////////// namespace Grid { class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal fill in. public: typedef uint32_t StencilInteger; int _checkerboard; int _npoints; // Move to template param? GridBase * _grid; // npoints of these std::vector _directions; std::vector _distances; std::vector _comm_buf_size; std::vector _permute_type; // npoints x Osites() of these std::vector > _offsets; std::vector > _is_local; std::vector > _permute; int _unified_buffer_size; int _request_count; CartesianStencil(GridBase *grid, int npoints, int checkerboard, const std::vector &directions, const std::vector &distances); // Add to tables for various cases; is this mistaken. only local if 1 proc in dim // Can this be avoided with simpler coding of comms? void Local (int point, int dimension,int shift,int cbmask); void Comms (int point, int dimension,int shift,int cbmask); void CopyPlane(int point, int dimension,int lplane,int rplane,int cbmask,int permute); void ScatterPlane (int point,int dimension,int plane,int cbmask,int offset); // Could allow a functional munging of the halo to another type during the comms. // this could implement the 16bit/32bit/64bit compression. template void HaloExchange(const Lattice &source,std::vector > &u_comm_buf,compressor &compress) { // conformable(source._grid,_grid); assert(source._grid==_grid); if (u_comm_buf.size() != _unified_buffer_size ) u_comm_buf.resize(_unified_buffer_size); int u_comm_offset=0; // Gather all comms buffers for(int point = 0 ; point < _npoints; point++) { compress.Point(point); int dimension = _directions[point]; int displacement = _distances[point]; int fd = _grid->_fdimensions[dimension]; int rd = _grid->_rdimensions[dimension]; // Map to always positive shift modulo global full dimension. int shift = (displacement+fd)%fd; // int checkerboard = _grid->CheckerBoardDestination(source.checkerboard,shift); assert (source.checkerboard== _checkerboard); // the permute type int simd_layout = _grid->_simd_layout[dimension]; int comm_dim = _grid->_processors[dimension] >1 ; int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim); // Gather phase int sshift [2]; if ( comm_dim ) { sshift[0] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Even); sshift[1] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Odd); if ( sshift[0] == sshift[1] ) { if (splice_dim) { GatherStartCommsSimd(source,dimension,shift,0x3,u_comm_buf,u_comm_offset,compress); } else { GatherStartComms(source,dimension,shift,0x3,u_comm_buf,u_comm_offset,compress); } } else { if(splice_dim){ GatherStartCommsSimd(source,dimension,shift,0x1,u_comm_buf,u_comm_offset,compress);// if checkerboard is unfavourable take two passes GatherStartCommsSimd(source,dimension,shift,0x2,u_comm_buf,u_comm_offset,compress);// both with block stride loop iteration } else { GatherStartComms(source,dimension,shift,0x1,u_comm_buf,u_comm_offset,compress); GatherStartComms(source,dimension,shift,0x2,u_comm_buf,u_comm_offset,compress); } } } } } template void GatherStartComms(const Lattice &rhs,int dimension,int shift,int cbmask, std::vector > &u_comm_buf, int &u_comm_offset,compressor & compress) { typedef typename cobj::vector_type vector_type; typedef typename cobj::scalar_type scalar_type; GridBase *grid=_grid; assert(rhs._grid==_grid); // conformable(_grid,rhs._grid); int fd = _grid->_fdimensions[dimension]; int rd = _grid->_rdimensions[dimension]; int pd = _grid->_processors[dimension]; int simd_layout = _grid->_simd_layout[dimension]; int comm_dim = _grid->_processors[dimension] >1 ; assert(simd_layout==1); assert(comm_dim==1); assert(shift>=0); assert(shift_slice_nblock[dimension]*_grid->_slice_block[dimension]; std::vector > send_buf(buffer_size); // hmm... std::vector > recv_buf(buffer_size); int cb= (cbmask==0x2)? Odd : Even; int sshift= _grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); for(int x=0;x>1; int bytes = words * sizeof(cobj); Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask,compress); int rank = _grid->_processor; int recv_from_rank; int xmit_to_rank; _grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank); assert (xmit_to_rank != _grid->ThisRank()); assert (recv_from_rank != _grid->ThisRank()); // FIXME Implement asynchronous send & also avoid buffer copy _grid->SendToRecvFrom((void *)&send_buf[0], xmit_to_rank, (void *)&recv_buf[0], recv_from_rank, bytes); for(int i=0;i void GatherStartCommsSimd(const Lattice &rhs,int dimension,int shift,int cbmask, std::vector > &u_comm_buf, int &u_comm_offset,compressor &compress) { const int Nsimd = _grid->Nsimd(); typedef typename cobj::vector_type vector_type; typedef typename cobj::scalar_type scalar_type; typedef typename cobj::scalar_object scalar_object; int fd = _grid->_fdimensions[dimension]; int rd = _grid->_rdimensions[dimension]; int ld = _grid->_ldimensions[dimension]; int pd = _grid->_processors[dimension]; int simd_layout = _grid->_simd_layout[dimension]; int comm_dim = _grid->_processors[dimension] >1 ; assert(comm_dim==1); assert(simd_layout==2); assert(shift>=0); assert(shiftPermuteType(dimension); /////////////////////////////////////////////// // Simd direction uses an extract/merge pair /////////////////////////////////////////////// int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension]; int words = sizeof(cobj)/sizeof(vector_type); /* * possibly slow to allocate * Doesn't matter in this test, but may want to preallocate in the * dirac operators */ std::vector > send_buf_extract(Nsimd,std::vector(buffer_size) ); std::vector > recv_buf_extract(Nsimd,std::vector(buffer_size) ); int bytes = buffer_size*sizeof(scalar_object); std::vector pointers(Nsimd); // std::vector rpointers(Nsimd); // received pointers /////////////////////////////////////////// // Work out what to send where /////////////////////////////////////////// int cb = (cbmask==0x2)? Odd : Even; int sshift= _grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb); // loop over outer coord planes orthog to dim for(int x=0;x= rd ); if ( any_offnode ) { for(int i=0;i(rhs,pointers,dimension,sx,cbmask,compress); for(int i=0;i>(permute_type+1)); int ic= (i&inner_bit)? 1:0; int my_coor = rd*ic + x; int nbr_coor = my_coor+sshift; int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors int nbr_lcoor= (nbr_coor%ld); int nbr_ic = (nbr_lcoor)/rd; // inner coord of peer int nbr_ox = (nbr_lcoor%rd); // outer coord of peer int nbr_lane = (i&(~inner_bit)); int recv_from_rank; int xmit_to_rank; if (nbr_ic) nbr_lane|=inner_bit; assert (sx == nbr_ox); if(nbr_proc){ _grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); _grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0], xmit_to_rank, (void *)&recv_buf_extract[i][0], recv_from_rank, bytes); rpointers[i] = &recv_buf_extract[i][0]; } else { rpointers[i] = &send_buf_extract[nbr_lane][0]; } } // Here we don't want to scatter, just place into a buffer. for(int i=0;i