/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./tests/Test_gfield_shift.cc Copyright (C) 2015 Author: Christopher Kelly <ckelly@bnl.gov> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ //Test the shifting of the gauge field that respects the boundary conditions #include <Grid/Grid.h> using namespace Grid; ; typedef ConjugateGimplR Gimpl; //can choose periodic / charge conjugate directions at wil typedef Gimpl::GaugeField GaugeField; typedef Gimpl::GaugeLinkField GaugeLinkField; typedef Gimpl::SiteGaugeField SiteGaugeField; typedef Gimpl::SiteGaugeLink SiteGaugeLink; GaugeField CshiftGaugeField(const GaugeField &U, const int dir, const int shift){ GridBase *Grid = U.Grid(); GaugeField out(Grid); GaugeLinkField Umu(Grid); for(int mu=0;mu<Grid->Nd();mu++){ Umu = PeekIndex<LorentzIndex>(U, mu); Umu = Gimpl::CshiftLink(Umu,dir,shift); PokeIndex<LorentzIndex>(out,Umu,mu); } return out; } int main (int argc, char ** argv) { Grid_init(&argc,&argv); auto latt_size = GridDefaultLatt(); auto simd_layout = GridDefaultSimd(4,vComplex::Nsimd()); auto mpi_layout = GridDefaultMpi(); std::vector<int> conj_dirs = {1,1,0,0}; Gimpl::setDirections(conj_dirs); GridCartesian Fine(latt_size,simd_layout,mpi_layout); GridParallelRNG FineRNG(&Fine); FineRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9})); GaugeField U(&Fine); GaugeField ShiftU(&Fine); GaugeLinkField link_field(&Fine), link_field_2(&Fine); //Like Test_cshift we put the lex coordinate index on each site but make it imaginary //so we can tell when it was complex conjugated LatticeComplex lex(&Fine); lex=Zero(); U = Zero(); { LatticeComplex coor(&Fine); Integer stride =1; for(int d=0;d<4;d++){ LatticeCoordinate(coor,d); lex = lex + coor*stride; stride=stride*latt_size[d]; } PokeIndex<ColourIndex>(link_field, lex, 0,0); //place on 0,0 element of link for(int mu=0;mu<Nd;mu++){ link_field_2 = link_field + mu*stride; //add in lex-mapping of mu link_field_2 = ComplexD(0,1) * link_field_2; //make imaginary PokeIndex<LorentzIndex>(U, link_field_2, mu); } } std::stringstream ss; ss<<"error"; for(int d=0;d<Fine._ndimension;d++){ ss<<"."<<Fine._processor_coor[d]; } ss<<"_wr_"<<Fine._processor; std::string fname(ss.str()); std::ofstream ferr(fname); Integer vol4d = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3]; bool fail = false; typename SiteGaugeField::scalar_object um; TComplex cm; for(int dir=0;dir<4;dir++){ for(int shift=-latt_size[dir]+1;shift<latt_size[dir];shift++){ if ( Fine.IsBoss() ) std::cout<<GridLogMessage<<"Shifting by "<<shift<<" in direction "<<dir << " dir is conj ? " << conj_dirs[dir] << std::endl; ShiftU = CshiftGaugeField(U,dir,shift); Coordinate coor(4); for(coor[3]=0;coor[3]<latt_size[3];coor[3]++){ for(coor[2]=0;coor[2]<latt_size[2];coor[2]++){ for(coor[1]=0;coor[1]<latt_size[1];coor[1]++){ for(coor[0]=0;coor[0]<latt_size[0];coor[0]++){ peekSite(um,ShiftU,coor); Coordinate scoor(coor); scoor[dir] = (scoor[dir]+shift + latt_size[dir])%latt_size[dir]; Integer slex = scoor[0] + latt_size[0]*scoor[1] + latt_size[0]*latt_size[1]*scoor[2] + latt_size[0]*latt_size[1]*latt_size[2]*scoor[3]; for(int mu = 0 ; mu < 4; mu++){ Integer slex_mu = slex + vol4d*mu; Complex scm(0,slex_mu); //imaginary if( ( shift > 0 && coor[dir] >= latt_size[dir]-shift && conj_dirs[dir] ) || ( shift < 0 && coor[dir] <= -shift-1 && conj_dirs[dir] ) ) scm = conjugate(scm); //CC if pulled over boundary cm = um(mu)()(0,0); RealD nrm = abs(scm-cm()()()); //std::cout << cm << " " << scm << std::endl; Coordinate peer(4); Complex tmp =cm; Integer index=real(tmp); Integer cm_mu = index / vol4d; index = index % vol4d; Lexicographic::CoorFromIndex(peer,index,latt_size); if (nrm > 0){ ferr<<"FAIL mu " << mu << " shift "<< shift<<" in dir "<< dir<<" ["<<coor[0]<<","<<coor[1]<<","<<coor[2]<<","<<coor[3]<<"] = "<< cm()()()<<" expect "<<scm<<" "<<nrm<<std::endl; ferr<<"Got mu "<< cm_mu << " site " <<index<<" : " << peer[0]<<","<<peer[1]<<","<<peer[2]<<","<<peer[3]<<std::endl; index=real(scm); Integer scm_mu = index / vol4d; index = index % vol4d; Lexicographic::CoorFromIndex(peer,index,latt_size); ferr<<"Expect mu " << scm_mu << " site " <<index<<": " << peer[0]<<","<<peer[1]<<","<<peer[2]<<","<<peer[3]<<std::endl; fail = true; } } }}}} } } if(fail) std::cout << "Test FAILED : see " << fname << " for more details" << std::endl; else std::cout << "Test Passed" << std::endl; Grid_finalize(); }