/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Copyright (C) 2015-2016 Author: Peter Boyle Author: Guido Cossu Author: David Murphy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include int main(int argc, char **argv) { using namespace Grid; using namespace Grid::QCD; Grid_init(&argc, &argv); int threads = GridThread::GetThreads(); // here make a routine to print all the relevant information on the run std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl; // Typedefs to simplify notation typedef WilsonImplR FermionImplPolicy; typedef MobiusFermionR FermionAction; typedef typename FermionAction::FermionField FermionField; typedef Grid::XmlReader Serialiser; //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: IntegratorParameters MD; // typedef GenericHMCRunner HMCWrapper; // MD.name = std::string("Leap Frog"); typedef GenericHMCRunner HMCWrapper; MD.name = std::string("Force Gradient"); // typedef GenericHMCRunner HMCWrapper; // MD.name = std::string("MinimumNorm2"); MD.MDsteps = 8; MD.trajL = 1.0; HMCparameters HMCparams; HMCparams.StartTrajectory = 70; HMCparams.Trajectories = 200; HMCparams.NoMetropolisUntil= 0; // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n"; // HMCparams.StartingType =std::string("ColdStart"); HMCparams.StartingType =std::string("CheckpointStart"); HMCparams.MD = MD; HMCWrapper TheHMC(HMCparams); // Grid from the command line arguments --grid and --mpi TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition CheckpointerParameters CPparams; CPparams.config_prefix = "ckpoint_EODWF_lat"; CPparams.rng_prefix = "ckpoint_EODWF_rng"; CPparams.saveInterval = 10; CPparams.format = "IEEE64BIG"; TheHMC.Resources.LoadNerscCheckpointer(CPparams); RNGModuleParameters RNGpar; RNGpar.serial_seeds = "1 2 3 4 5"; RNGpar.parallel_seeds = "6 7 8 9 10"; TheHMC.Resources.SetRNGSeeds(RNGpar); // Construct observables // here there is too much indirection typedef PlaquetteMod PlaqObs; TheHMC.Resources.AddObservable(); ////////////////////////////////////////////// const int Ls = 16; Real beta = 2.13; Real light_mass = 0.01; Real strange_mass = 0.04; Real pv_mass = 1.0; RealD M5 = 1.8; RealD b = 1.0; RealD c = 0.0; std::vector hasenbusch({ 0.1, 0.3 }); auto GridPtr = TheHMC.Resources.GetCartesian(); auto GridRBPtr = TheHMC.Resources.GetRBCartesian(); auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr); auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr); IwasakiGaugeActionR GaugeAction(beta); // temporarily need a gauge field LatticeGaugeField U(GridPtr); // These lines are unecessary if BC are all periodic std::vector boundary = {1,1,1,-1}; FermionAction::ImplParams Params(boundary); double ActionStoppingCondition = 1e-10; double DerivativeStoppingCondition = 1e-7; double MaxCGIterations = 30000; ConjugateGradient ActionCG(ActionStoppingCondition,MaxCGIterations); ConjugateGradient DerivativeCG(DerivativeStoppingCondition,MaxCGIterations); //////////////////////////////////// // Collect actions //////////////////////////////////// ActionLevel Level1(1); ActionLevel Level2(4); //////////////////////////////////// // Strange action //////////////////////////////////// // FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params); // FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params); // OneFlavourEvenOddRatioRationalPseudoFermionAction StrangePseudoFermion(StrangePauliVillarsOp,StrangeOp,OFRp); // Level1.push_back(&StrangePseudoFermion); // DJM: setup for EOFA ratio (Mobius) OneFlavourRationalParams OFRp; OFRp.lo = 0.1; OFRp.hi = 25.0; OFRp.MaxIter = 10000; OFRp.tolerance= 1.0e-9; OFRp.degree = 14; OFRp.precision= 50; MobiusEOFAFermionR Strange_Op_L(U, *FGrid, *FrbGrid, *GridPtr, *GridRBPtr, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c); MobiusEOFAFermionR Strange_Op_R(U, *FGrid, *FrbGrid, *GridPtr, *GridRBPtr, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c); ExactOneFlavourRatioPseudoFermionAction EOFA(Strange_Op_L, Strange_Op_R, ActionCG, OFRp, true); Level1.push_back(&EOFA); //////////////////////////////////// // up down action //////////////////////////////////// std::vector light_den; std::vector light_num; int n_hasenbusch = hasenbusch.size(); light_den.push_back(light_mass); for(int h=0;h Numerators; std::vector Denominators; std::vector *> Quotients; for(int h=0;h(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG)); } for(int h=0;h