/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Hadrons/Modules/MContraction/Nucleon.hpp Copyright (C) 2015-2019 Author: Antonin Portelli Author: Felix Erben This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #ifndef Hadrons_MContraction_Nucleon_hpp_ #define Hadrons_MContraction_Nucleon_hpp_ #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * Nucleon * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MContraction) class NucleonPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(NucleonPar, std::string, q1, std::string, q2, std::string, q3, std::string, output); }; template class TNucleon: public Module { public: FERM_TYPE_ALIASES(FImpl1, 1); FERM_TYPE_ALIASES(FImpl2, 2); FERM_TYPE_ALIASES(FImpl3, 3); class Result: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(Result, std::vector, corr); }; public: // constructor TNucleon(const std::string name); // destructor virtual ~TNucleon(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); protected: // setup virtual void setup(void); // execution virtual void execute(void); }; MODULE_REGISTER_TMP(Nucleon, ARG(TNucleon), MContraction); /****************************************************************************** * TNucleon implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TNucleon::TNucleon(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TNucleon::getInput(void) { std::vector input = {par().q1, par().q2, par().q3}; return input; } template std::vector TNucleon::getOutput(void) { std::vector out = {}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TNucleon::setup(void) { envTmpLat(LatticeComplex, "c"); envTmpLat(LatticeComplex, "diquark"); } // execution /////////////////////////////////////////////////////////////////// template void TNucleon::execute(void) { LOG(Message) << "Computing nucleon contractions '" << getName() << "' using" << " quarks '" << par().q1 << "', '" << par().q2 << "', and '" << par().q3 << "'" << std::endl; auto &q1 = envGet(PropagatorField1, par().q1); auto &q2 = envGet(PropagatorField2, par().q2); auto &q3 = envGet(PropagatorField3, par().q2); envGetTmp(LatticeComplex, c); envGetTmp(LatticeComplex, diquark); Result result; int nt = env().getDim(Tp); result.corr.resize(nt); std::vector buf; // C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3 Gamma Cg5(Gamma::Algebra::SigmaXZ); Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4) std::vector> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}}; std::vector epsilon_sgn = {1,1,1,-1,-1,-1}; // This is the \delta_{123}^{123} part for (int ie_src=0; ie_src < 6 ; ie_src++){ int c1_src = epsilon[ie_src][0]; //a int c2_src = epsilon[ie_src][1]; //b int c3_src = epsilon[ie_src][2]; //c for (int ie_snk=0; ie_snk < 6 ; ie_snk++){ int c1_snk = epsilon[ie_snk][0]; //a' int c2_snk = epsilon[ie_snk][1]; //b' int c3_snk = epsilon[ie_snk][2]; //c' auto Dcc = peekColour(q1,c1_snk,c1_src); //D_{gamma' gamma} auto Daa = peekColour(q2,c2_snk,c2_src); //D_{alpha' alpha} //auto test = transposeSpin(Daa); //Does not work... auto Dbb = peekColour(q3,c3_snk,c3_src); //D_{beta' beta} diquark = trace(Cg5 * Daa * Cg5 * Dbb); //Daa transposed???? //diquark = q2()()(c2,1) * Cg5 * q3()()(c3,2); //Why does this not work?? auto temp = Dcc * diquark; auto g4_temp = g4 * temp; int parity = 1; c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * (double)parity * trace(temp + g4_temp); } } // This is the \delta_{123}^{213} part for (int ie_src=0; ie_src < 6 ; ie_src++){ int c1_src = epsilon[ie_src][0]; //a int c2_src = epsilon[ie_src][1]; //b int c3_src = epsilon[ie_src][2]; //c for (int ie_snk=0; ie_snk < 6 ; ie_snk++){ int c1_snk = epsilon[ie_snk][0]; //a' int c2_snk = epsilon[ie_snk][1]; //b' int c3_snk = epsilon[ie_snk][2]; //c' auto Dca = peekColour(q1,c1_snk,c2_src); //D_{gamma' alpha} auto Dac = peekColour(q2,c2_snk,c1_src); //D_{alpha' gamma} auto Dbb = peekColour(q3,c3_snk,c3_src); //D_{beta' beta} auto temp = Dca * Cg5 * Dbb * Cg5 * Dac; //(Dbb*Cg5) transposed??? auto g4_temp = g4 * temp; int parity = 1; c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * (double)parity * trace(temp + g4_temp); } } sliceSum(c,buf,Tp); for (unsigned int t = 0; t < buf.size(); ++t) { result.corr[t] = TensorRemove(buf[t]); } saveResult(par().output, "baryon", result); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MContraction_Nucleon_hpp_