#ifndef GRID_SIMD_H #define GRID_SIMD_H //////////////////////////////////////////////////////////////////////// // Define scalar and vector floating point types // // Scalar: RealF, RealD, ComplexF, ComplexD // // Vector: vRealF, vRealD, vComplexF, vComplexD // // Vector types are arch dependent //////////////////////////////////////////////////////////////////////// typedef uint32_t Integer; #ifdef SSE4 #include #endif #if defined(AVX1) || defined (AVX2) #include // _mm256_set_m128i(hi,lo); // not defined in all versions of immintrin.h #ifndef _mm256_set_m128i #define _mm256_set_m128i(hi,lo) _mm256_insertf128_si256(_mm256_castsi128_si256(lo),(hi),1) #endif #endif #ifdef AVX512 #include #ifndef KNC_ONLY_STORES #define _mm512_storenrngo_ps _mm512_store_ps // not present in AVX512 #define _mm512_storenrngo_pd _mm512_store_pd // not present in AVX512 #endif #endif namespace Grid { typedef float RealF; typedef double RealD; #ifdef GRID_DEFAULT_PRECISION_DOUBLE typedef RealD Real; #else typedef RealF Real; #endif typedef std::complex ComplexF; typedef std::complex ComplexD; typedef std::complex Complex; inline RealF adj(const RealF & r){ return r; } inline RealF conjugate(const RealF & r){ return r; } inline RealF real(const RealF & r){ return r; } inline RealD adj(const RealD & r){ return r; } inline RealD conjugate(const RealD & r){ return r; } inline RealD real(const RealD & r){ return r; } inline ComplexD conjugate(const ComplexD& r){ return(conj(r)); } inline ComplexD adj(const ComplexD& r){ return(conjugate(r)); } inline ComplexF conjugate(const ComplexF& r ){ return(conj(r)); } inline ComplexF adj(const ComplexF& r ){ return(conjugate(r)); } inline ComplexD innerProduct(const ComplexD & l, const ComplexD & r) { return conjugate(l)*r; } inline ComplexF innerProduct(const ComplexF & l, const ComplexF & r) { return conjugate(l)*r; } inline RealD innerProduct(const RealD & l, const RealD & r) { return l*r; } inline RealF innerProduct(const RealF & l, const RealF & r) { return l*r; } //////////////////////////////////////////////////////////////////////////////// //Provide support functions for basic real and complex data types required by Grid //Single and double precision versions. Should be able to template this once only. //////////////////////////////////////////////////////////////////////////////// inline void mac (ComplexD * __restrict__ y,const ComplexD * __restrict__ a,const ComplexD *__restrict__ x){ *y = (*a) * (*x)+(*y); }; inline void mult(ComplexD * __restrict__ y,const ComplexD * __restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) * (*r);} inline void sub (ComplexD * __restrict__ y,const ComplexD * __restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) - (*r);} inline void add (ComplexD * __restrict__ y,const ComplexD * __restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) + (*r);} // conjugate already supported for complex inline void mac (ComplexF * __restrict__ y,const ComplexF * __restrict__ a,const ComplexF *__restrict__ x){ *y = (*a) * (*x)+(*y); } inline void mult(ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) * (*r); } inline void sub (ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) - (*r); } inline void add (ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) + (*r); } //conjugate already supported for complex inline ComplexF timesI(const ComplexF &r) { return(r*ComplexF(0.0,1.0));} inline ComplexD timesI(const ComplexD &r) { return(r*ComplexD(0.0,1.0));} inline ComplexF timesMinusI(const ComplexF &r){ return(r*ComplexF(0.0,-1.0));} inline ComplexD timesMinusI(const ComplexD &r){ return(r*ComplexD(0.0,-1.0));} inline void timesI(ComplexF &ret,const ComplexF &r) { ret = timesI(r);} inline void timesI(ComplexD &ret,const ComplexD &r) { ret = timesI(r);} inline void timesMinusI(ComplexF &ret,const ComplexF &r){ ret = timesMinusI(r);} inline void timesMinusI(ComplexD &ret,const ComplexD &r){ ret = timesMinusI(r);} inline void mac (RealD * __restrict__ y,const RealD * __restrict__ a,const RealD *__restrict__ x){ *y = (*a) * (*x)+(*y);} inline void mult(RealD * __restrict__ y,const RealD * __restrict__ l,const RealD *__restrict__ r){ *y = (*l) * (*r);} inline void sub (RealD * __restrict__ y,const RealD * __restrict__ l,const RealD *__restrict__ r){ *y = (*l) - (*r);} inline void add (RealD * __restrict__ y,const RealD * __restrict__ l,const RealD *__restrict__ r){ *y = (*l) + (*r);} inline void mac (RealF * __restrict__ y,const RealF * __restrict__ a,const RealF *__restrict__ x){ *y = (*a) * (*x)+(*y); } inline void mult(RealF * __restrict__ y,const RealF * __restrict__ l,const RealF *__restrict__ r){ *y = (*l) * (*r); } inline void sub (RealF * __restrict__ y,const RealF * __restrict__ l,const RealF *__restrict__ r){ *y = (*l) - (*r); } inline void add (RealF * __restrict__ y,const RealF * __restrict__ l,const RealF *__restrict__ r){ *y = (*l) + (*r); } inline void vstream(ComplexF &l, const ComplexF &r){ l=r;} inline void vstream(ComplexD &l, const ComplexD &r){ l=r;} inline void vstream(RealF &l, const RealF &r){ l=r;} inline void vstream(RealD &l, const RealD &r){ l=r;} class Zero{}; static Zero zero; template inline void zeroit(itype &arg){ arg=zero;}; template<> inline void zeroit(ComplexF &arg){ arg=0; }; template<> inline void zeroit(ComplexD &arg){ arg=0; }; template<> inline void zeroit(RealF &arg){ arg=0; }; template<> inline void zeroit(RealD &arg){ arg=0; }; #if defined (SSE4) typedef __m128 fvec; typedef __m128d dvec; typedef __m128 cvec; typedef __m128d zvec; typedef __m128i ivec; #endif #if defined (AVX1) || defined (AVX2) typedef __m256 fvec; typedef __m256d dvec; typedef __m256 cvec; typedef __m256d zvec; typedef __m256i ivec; #endif #if defined (AVX512) typedef __m512 fvec; typedef __m512d dvec; typedef __m512 cvec; typedef __m512d zvec; typedef __m512i ivec; #endif #if defined (QPX) typedef float fvec __attribute__ ((vector_size (16))); // QPX has same SIMD width irrespective of precision typedef float cvec __attribute__ ((vector_size (16))); typedef vector4double dvec; typedef vector4double zvec; #endif #if defined (AVX1) || defined (AVX2) || defined (AVX512) inline void v_prefetch0(int size, const char *ptr){ for(int i=0;i BA DC FE HG // Permute 1 every ABCDEFGH -> CD AB GH EF // Permute 2 every ABCDEFGH -> EFGH ABCD // Permute 3 possible on longer iVector lengths (512bit = 8 double = 16 single) // Permute 4 possible on half precision @512bit vectors. ////////////////////////////////////////////////////////// template inline void Gpermute(vsimd &y,const vsimd &b,int perm){ union { fvec f; decltype(vsimd::v) v; } conv; conv.v = b.v; switch (perm){ #if defined(AVX1)||defined(AVX2) // 8x32 bits=>3 permutes case 2: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(2,3,0,1)); break; case 1: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(1,0,3,2)); break; case 0: conv.f = _mm256_permute2f128_ps(conv.f,conv.f,0x01); break; #endif #ifdef SSE4 case 1: conv.f = _mm_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(2,3,0,1)); break; case 0: conv.f = _mm_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(1,0,3,2));break; #endif #ifdef AVX512 // 16 floats=> permutes // Permute 0 every abcd efgh ijkl mnop -> badc fehg jilk nmpo // Permute 1 every abcd efgh ijkl mnop -> cdab ghef jkij opmn // Permute 2 every abcd efgh ijkl mnop -> efgh abcd mnop ijkl // Permute 3 every abcd efgh ijkl mnop -> ijkl mnop abcd efgh case 3: conv.f = _mm512_swizzle_ps(conv.f,_MM_SWIZ_REG_CDAB); break; case 2: conv.f = _mm512_swizzle_ps(conv.f,_MM_SWIZ_REG_BADC); break; case 1: conv.f = _mm512_permute4f128_ps(conv.f,(_MM_PERM_ENUM)_MM_SHUFFLE(2,3,0,1)); break; case 0: conv.f = _mm512_permute4f128_ps(conv.f,(_MM_PERM_ENUM)_MM_SHUFFLE(1,0,3,2)); break; #endif #ifdef QPX #error not implemented #endif default: assert(0); break; } y.v=conv.v; }; }; #include namespace Grid { // NB: Template the following on "type Complex" and then implement *,+,- for // ComplexF, ComplexD, RealF, RealD above to // get full generality of binops with scalars. inline void mac (vComplexF *__restrict__ y,const ComplexF *__restrict__ a,const vComplexF *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vComplexF *__restrict__ y,const ComplexF *__restrict__ l,const vComplexF *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vComplexF *__restrict__ y,const ComplexF *__restrict__ l,const vComplexF *__restrict__ r){ *y = (*l) - (*r); } inline void add (vComplexF *__restrict__ y,const ComplexF *__restrict__ l,const vComplexF *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vComplexF *__restrict__ y,const vComplexF *__restrict__ a,const ComplexF *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vComplexF *__restrict__ y,const vComplexF *__restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vComplexF *__restrict__ y,const vComplexF *__restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) - (*r); } inline void add (vComplexF *__restrict__ y,const vComplexF *__restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vComplexD *__restrict__ y,const ComplexD *__restrict__ a,const vComplexD *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vComplexD *__restrict__ y,const ComplexD *__restrict__ l,const vComplexD *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vComplexD *__restrict__ y,const ComplexD *__restrict__ l,const vComplexD *__restrict__ r){ *y = (*l) - (*r); } inline void add (vComplexD *__restrict__ y,const ComplexD *__restrict__ l,const vComplexD *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vComplexD *__restrict__ y,const vComplexD *__restrict__ a,const ComplexD *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vComplexD *__restrict__ y,const vComplexD *__restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vComplexD *__restrict__ y,const vComplexD *__restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) - (*r); } inline void add (vComplexD *__restrict__ y,const vComplexD *__restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vRealF *__restrict__ y,const RealF *__restrict__ a,const vRealF *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vRealF *__restrict__ y,const RealF *__restrict__ l,const vRealF *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vRealF *__restrict__ y,const RealF *__restrict__ l,const vRealF *__restrict__ r){ *y = (*l) - (*r); } inline void add (vRealF *__restrict__ y,const RealF *__restrict__ l,const vRealF *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vRealF *__restrict__ y,const vRealF *__restrict__ a,const RealF *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vRealF *__restrict__ y,const vRealF *__restrict__ l,const RealF *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vRealF *__restrict__ y,const vRealF *__restrict__ l,const RealF *__restrict__ r){ *y = (*l) - (*r); } inline void add (vRealF *__restrict__ y,const vRealF *__restrict__ l,const RealF *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vRealD *__restrict__ y,const RealD *__restrict__ a,const vRealD *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vRealD *__restrict__ y,const RealD *__restrict__ l,const vRealD *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vRealD *__restrict__ y,const RealD *__restrict__ l,const vRealD *__restrict__ r){ *y = (*l) - (*r); } inline void add (vRealD *__restrict__ y,const RealD *__restrict__ l,const vRealD *__restrict__ r){ *y = (*l) + (*r); } inline void mac (vRealD *__restrict__ y,const vRealD *__restrict__ a,const RealD *__restrict__ x){ *y = (*a)*(*x)+(*y); }; inline void mult(vRealD *__restrict__ y,const vRealD *__restrict__ l,const RealD *__restrict__ r){ *y = (*l) * (*r); } inline void sub (vRealD *__restrict__ y,const vRealD *__restrict__ l,const RealD *__restrict__ r){ *y = (*l) - (*r); } inline void add (vRealD *__restrict__ y,const vRealD *__restrict__ l,const RealD *__restrict__ r){ *y = (*l) + (*r); } // Default precision #ifdef GRID_DEFAULT_PRECISION_DOUBLE typedef vRealD vReal; typedef vComplexD vComplex; #else typedef vRealF vReal; typedef vComplexF vComplex; #endif inline std::ostream& operator<< (std::ostream& stream, const vComplexF &o){ int nn=vComplexF::Nsimd(); std::vector > buf(nn); vstore(o,&buf[0]); stream<<"<"; for(int i=0;i"; return stream; } inline std::ostream& operator<< (std::ostream& stream, const vComplexD &o){ int nn=vComplexD::Nsimd(); std::vector > buf(nn); vstore(o,&buf[0]); stream<<"<"; for(int i=0;i"; return stream; } inline std::ostream& operator<< (std::ostream& stream, const vRealF &o){ int nn=vRealF::Nsimd(); std::vector > buf(nn); vstore(o,&buf[0]); stream<<"<"; for(int i=0;i"; return stream; } inline std::ostream& operator<< (std::ostream& stream, const vRealD &o){ int nn=vRealD::Nsimd(); std::vector > buf(nn); vstore(o,&buf[0]); stream<<"<"; for(int i=0;i"; return stream; } } #endif