#ifndef Hadrons_MDistil_PerambLight_hpp_ #define Hadrons_MDistil_PerambLight_hpp_ #include #include #include #include #include #include #include #include BEGIN_HADRONS_NAMESPACE /****************************************************************************** * PerambLight * ******************************************************************************/ BEGIN_MODULE_NAMESPACE(MDistil) class PerambLightPar: Serializable { public: GRID_SERIALIZABLE_CLASS_MEMBERS(PerambLightPar, std::string, noise, std::string, eigenPack, bool, multiFile); }; template class TPerambLight: public Module { public: // constructor TPerambLight(const std::string name); // destructor virtual ~TPerambLight(void) {}; // dependency relation virtual std::vector getInput(void); virtual std::vector getOutput(void); // setup virtual void setup(void); // execution virtual void execute(void); }; MODULE_REGISTER_TMP(PerambLight, TPerambLight, MDistil); /****************************************************************************** * TPerambLight implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// template TPerambLight::TPerambLight(const std::string name) : Module(name) {} // dependencies/products /////////////////////////////////////////////////////// template std::vector TPerambLight::getInput(void) { std::vector in; in.push_back(par().noise); in.push_back(par().eigenPack); return in; } template std::vector TPerambLight::getOutput(void) { std::vector out = {getName() + "_perambulator_light"}; return out; } // setup /////////////////////////////////////////////////////////////////////// template void TPerambLight::setup(void) { auto &noise = envGet(std::vector>>, par().noise); int nvec = 6; int Nt=64; envCreate(Perambulator, getName() + "_perambulator_light", 1, noise.size() *nvec*Nt); GridCartesian * grid4d = env().getGrid(); std::vector latt_size = GridDefaultLatt(); std::vector simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd()); std::vector mpi_layout = GridDefaultMpi(); std::vector simd_layout_3 = GridDefaultSimd(Nd-1, vComplex::Nsimd()); latt_size[Nd-1] = 1; simd_layout_3.push_back( 1 ); mpi_layout[Nd-1] = 1; GridCartesian * grid3d = new GridCartesian(latt_size,simd_layout_3,mpi_layout,*grid4d); envTmp(LatticeSpinColourVector, "dist_source",1,LatticeSpinColourVector(grid4d)); envTmp(LatticeSpinColourVector, "tmp2",1,LatticeSpinColourVector(grid4d)); envTmp(LatticeSpinColourVector, "result",1,LatticeSpinColourVector(grid4d)); envTmp(LatticeSpinColourVector, "result_single_component",1,LatticeSpinColourVector(grid4d)); envTmp(LatticeColourVector, "result_nospin",1,LatticeColourVector(grid4d)); envTmp(LatticeColourVector, "tmp_nospin",1,LatticeColourVector(grid4d)); envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d)); envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d)); envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d)); envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d)); envTmp(LatticeSpinVector, "peramb_tmp",1,LatticeSpinVector(grid4d)); } // execution /////////////////////////////////////////////////////////////////// template void TPerambLight::execute(void) { auto &noise = envGet(std::vector>>, par().noise); auto &perambulator = envGet(Perambulator, getName() + "_perambulator_light"); auto &epack = envGet(Grid::Hadrons::EigenPack, par().eigenPack); GridCartesian * grid4d = env().getGrid(); std::vector latt_size = GridDefaultLatt(); std::vector simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd()); std::vector mpi_layout = GridDefaultMpi(); std::vector simd_layout_3 = GridDefaultSimd(Nd-1, vComplex::Nsimd()); latt_size[Nd-1] = 1; simd_layout_3.push_back( 1 ); mpi_layout[Nd-1] = 1; GridCartesian * grid3d = new GridCartesian(latt_size,simd_layout_3,mpi_layout,*grid4d); LatticeGaugeField Umu(grid4d); FieldMetaData header; std::string fileName( "/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/ckpoint_lat.3000" ); std::cout << GridLogMessage << "Loading NERSC configuration from '" << fileName << "'" << std::endl; NerscIO::readConfiguration(Umu, header, fileName); std::cout << GridLogMessage << "reading done." << std::endl; envGetTmp(LatticeSpinColourVector, dist_source); envGetTmp(LatticeSpinColourVector, tmp2); envGetTmp(LatticeSpinColourVector, result); envGetTmp(LatticeSpinColourVector, result_single_component); envGetTmp(LatticeColourVector, result_nospin); envGetTmp(LatticeColourVector, tmp_nospin); envGetTmp(LatticeSpinColourVector, tmp3d); envGetTmp(LatticeColourVector, tmp3d_nospin); envGetTmp(LatticeColourVector, result_3d); envGetTmp(LatticeColourVector, evec3d); envGetTmp(LatticeSpinVector, peramb_tmp); int Ntlocal = grid4d->LocalDimensions()[3]; int Ntfirst = grid4d->LocalStarts()[3]; int tsrc=0; int nnoise=1; int LI=6; int Ns=4; int Nt_inv=1; int Nt=64; int TI=64; int nvec=6; bool full_tdil=true; Real mass=0.005; // TODO Infile Real M5 =1.8; // TODO Infile std::cout << "init RBG " << std::endl; GridRedBlackCartesian RBGrid(grid4d); std::cout << "init RBG done" << std::endl; int Ls=16; double CGPrecision = 10e-8; int MaxIterations = 10000; GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,grid4d); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,grid4d); typedef DomainWallFermionR FermionAction; FermionAction Dop(Umu,*FGrid,*FrbGrid,*grid4d,RBGrid,mass,M5); MdagMLinearOperator HermOp(Dop); ConjugateGradient CG(CGPrecision,MaxIterations); SchurRedBlackDiagMooeeSolve SchurSolver(CG); for (int inoise = 0; inoise < nnoise; inoise++) { for (int dk = 0; dk < LI; dk++) { for (int dt = 0; dt < Nt_inv; dt++) { if(full_tdil) dt=tsrc; //this works for now, as longs as tsrc=0, but will crash otherwise! for (int ds = 0; ds < Ns; ds++) { std::cout << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl; dist_source = zero; tmp3d_nospin = zero; evec3d = zero; for (int it = dt; it < Nt; it += TI){ if( it >= Ntfirst && it < Ntfirst + Ntlocal ) { for (int ik = dk; ik < nvec; ik += LI){ for (int is = ds; is < Ns; is += Ns){ //at the moment, full spin dilution is enforced std::cout << "LapH source vector from noise " << it << " and dilution component (d_k,d_t,d_alpha) : (" << ik << ","<< is << ")" << std::endl; ExtractSliceLocal(evec3d,epack.evec[ik],0,it,3); tmp3d_nospin = evec3d * noise[inoise][it][ik]()(is)(); //noises do not have to be a spin vector tmp3d=zero; pokeSpin(tmp3d,tmp3d_nospin,is); tmp2=zero; InsertSliceLocal(tmp3d,tmp2,0,it-Ntfirst,Grid::QCD::Tdir); dist_source += tmp2; } } } } std::cout << "Inversion for noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl; result=zero; LatticeFermion src5(FGrid); LatticeFermion sol5(FGrid); Dop.ImportPhysicalFermionSource(dist_source,src5); SchurSolver(Dop,src5,sol5); Dop.ExportPhysicalFermionSolution(sol5,result); //These are the meson sinks //if (compute_current_sink) // current_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result; std::cout << "Contraction of perambulator from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl; for (int is = 0; is < Ns; is++) { result_nospin = peekSpin(result,is); for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++) { ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Grid::QCD::Tdir); for (int ivec = 0; ivec < nvec; ivec++) { ExtractSliceLocal(evec3d,epack.evec[ivec],0,t,3); pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),innerProduct(evec3d, result_3d),is); } } } } } } } std::cout << "perambulator done" << std::endl; //perambulator.SliceShare( grid3d, grid4d ); // THIS IS WHERE WE WANT TO SAVE THE PERAMBULATORS TO DISK //perambulator.WriteTemporary(std::string("perambulators/file")); } END_MODULE_NAMESPACE END_HADRONS_NAMESPACE #endif // Hadrons_MDistil_PerambLight_hpp_