/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/communicator/Communicator_mpi.cc Copyright (C) 2015 Author: Peter Boyle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include #include namespace Grid { /////////////////////////////////////////////////////////////////////////////////////////////////// // Info that is setup once and indept of cartesian layout /////////////////////////////////////////////////////////////////////////////////////////////////// MPI_Comm CartesianCommunicator::communicator_world; // Should error check all MPI calls. void CartesianCommunicator::Init(int *argc, char ***argv) { int flag; int provided; MPI_Initialized(&flag); // needed to coexist with other libs apparently if ( !flag ) { MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided); if ( provided != MPI_THREAD_MULTIPLE ) { QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute; } } MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world); ShmInitGeneric(); } CartesianCommunicator::~CartesianCommunicator() { if (communicator && !MPI::Is_finalized()) MPI_Comm_free(&communicator); } void CartesianCommunicator::GlobalSum(uint32_t &u){ int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalSum(uint64_t &u){ int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalXOR(uint32_t &u){ int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalXOR(uint64_t &u){ int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalSum(float &f){ int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalSumVector(float *f,int N) { int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalSum(double &d) { int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator); assert(ierr==0); } void CartesianCommunicator::GlobalSumVector(double *d,int N) { int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator); assert(ierr==0); } void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest) { int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest); assert(ierr==0); } int CartesianCommunicator::RankFromProcessorCoor(std::vector &coor) { int rank; int ierr=MPI_Cart_rank (communicator, &coor[0], &rank); assert(ierr==0); return rank; } void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector &coor) { coor.resize(_ndimension); int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]); assert(ierr==0); } // Basic Halo comms primitive void CartesianCommunicator::SendToRecvFrom(void *xmit, int dest, void *recv, int from, int bytes) { std::vector reqs(0); SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes); SendToRecvFromComplete(reqs); } void CartesianCommunicator::SendRecvPacket(void *xmit, void *recv, int sender, int receiver, int bytes) { MPI_Status stat; assert(sender != receiver); int tag = sender; if ( _processor == sender ) { MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator); } if ( _processor == receiver ) { MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat); } } // Basic Halo comms primitive void CartesianCommunicator::SendToRecvFromBegin(std::vector &list, void *xmit, int dest, void *recv, int from, int bytes) { int myrank = _processor; int ierr; if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) { MPI_Request xrq; MPI_Request rrq; ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq); ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq); assert(ierr==0); list.push_back(xrq); list.push_back(rrq); } else { // Give the CPU to MPI immediately; can use threads to overlap optionally ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank, recv,bytes,MPI_CHAR,from, from, communicator,MPI_STATUS_IGNORE); assert(ierr==0); } } void CartesianCommunicator::SendToRecvFromComplete(std::vector &list) { if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) { int nreq=list.size(); std::vector status(nreq); int ierr = MPI_Waitall(nreq,&list[0],&status[0]); assert(ierr==0); } } void CartesianCommunicator::Barrier(void) { int ierr = MPI_Barrier(communicator); assert(ierr==0); } void CartesianCommunicator::Broadcast(int root,void* data, int bytes) { int ierr=MPI_Bcast(data, bytes, MPI_BYTE, root, communicator); assert(ierr==0); } void CartesianCommunicator::AllToAll(int dim,void *in,void *out,int bytes) { std::vector row(_ndimension,1); assert(dim>=0 && dim<_ndimension); // Split the communicator row[dim] = _processors[dim]; CartesianCommunicator Comm(row,*this); Comm.AllToAll(in,out,bytes); } void CartesianCommunicator::AllToAll(void *in,void *out,int bytes) { MPI_Alltoall(in ,bytes,MPI_BYTE,out,bytes,MPI_BYTE,communicator); } /////////////////////////////////////////////////////// // Should only be used prior to Grid Init finished. // Check for this? /////////////////////////////////////////////////////// int CartesianCommunicator::RankWorld(void){ int r; MPI_Comm_rank(communicator_world,&r); return r; } void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { int ierr= MPI_Bcast(data, bytes, MPI_BYTE, root, communicator_world); assert(ierr==0); } }