/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc Copyright (C) 2017 Author: paboyle Author: Guido Cossu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include #include #include namespace Grid { namespace QCD { // *NOT* EO template RealD WilsonCloverFermion::M(const FermionField &in, FermionField &out) { FermionField temp(out._grid); // Wilson term out.checkerboard = in.checkerboard; this->Dhop(in, out, DaggerNo); // Clover term Mooee(in, temp); out += temp; return norm2(out); } template RealD WilsonCloverFermion::Mdag(const FermionField &in, FermionField &out) { FermionField temp(out._grid); // Wilson term out.checkerboard = in.checkerboard; this->Dhop(in, out, DaggerYes); // Clover term MooeeDag(in, temp); out += temp; return norm2(out); } template void WilsonCloverFermion::ImportGauge(const GaugeField &_Umu) { WilsonFermion::ImportGauge(_Umu); GridBase *grid = _Umu._grid; typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid); // Compute the field strength terms mu>nu WilsonLoops::FieldStrength(Bx, _Umu, Zdir, Ydir); WilsonLoops::FieldStrength(By, _Umu, Zdir, Xdir); WilsonLoops::FieldStrength(Bz, _Umu, Ydir, Xdir); WilsonLoops::FieldStrength(Ex, _Umu, Tdir, Xdir); WilsonLoops::FieldStrength(Ey, _Umu, Tdir, Ydir); WilsonLoops::FieldStrength(Ez, _Umu, Tdir, Zdir); // Compute the Clover Operator acting on Colour and Spin CloverTerm = fillCloverYZ(Bx); CloverTerm += fillCloverXZ(By); CloverTerm += fillCloverXY(Bz); CloverTerm += fillCloverXT(Ex); CloverTerm += fillCloverYT(Ey); CloverTerm += fillCloverZT(Ez); CloverTerm *= (0.5) * csw; CloverTerm += (4.0 + this->mass); int lvol = _Umu._grid->lSites(); int DimRep = Impl::Dimension; Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep); Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep); std::vector lcoor; typename SiteCloverType::scalar_object Qx = zero, Qxinv = zero; for (int site = 0; site < lvol; site++) { grid->LocalIndexToLocalCoor(site, lcoor); EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep); peekLocalSite(Qx, CloverTerm, lcoor); Qxinv = zero; //if (csw!=0){ for (int j = 0; j < Ns; j++) for (int k = 0; k < Ns; k++) for (int a = 0; a < DimRep; a++) for (int b = 0; b < DimRep; b++) EigenCloverOp(a + j * DimRep, b + k * DimRep) = Qx()(j, k)(a, b); // if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl; EigenInvCloverOp = EigenCloverOp.inverse(); //std::cout << EigenInvCloverOp << std::endl; for (int j = 0; j < Ns; j++) for (int k = 0; k < Ns; k++) for (int a = 0; a < DimRep; a++) for (int b = 0; b < DimRep; b++) Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep); // if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl; // } pokeLocalSite(Qxinv, CloverTermInv, lcoor); } // Separate the even and odd parts pickCheckerboard(Even, CloverTermEven, CloverTerm); pickCheckerboard(Odd, CloverTermOdd, CloverTerm); pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm)); pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm)); pickCheckerboard(Even, CloverTermInvEven, CloverTermInv); pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv); pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv)); pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv)); } template void WilsonCloverFermion::Mooee(const FermionField &in, FermionField &out) { conformable(in, out); this->MooeeInternal(in, out, DaggerNo, InverseNo); } template void WilsonCloverFermion::MooeeDag(const FermionField &in, FermionField &out) { this->MooeeInternal(in, out, DaggerYes, InverseNo); } template void WilsonCloverFermion::MooeeInv(const FermionField &in, FermionField &out) { conformable(in,out); this->MooeeInternal(in, out, DaggerNo, InverseYes); } template void WilsonCloverFermion::MooeeInvDag(const FermionField &in, FermionField &out) { conformable(in,out); this->MooeeInternal(in, out, DaggerYes, InverseYes); } template void WilsonCloverFermion::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv) { out.checkerboard = in.checkerboard; CloverFieldType *Clover; assert(in.checkerboard == Odd || in.checkerboard == Even); if (dag) { if (in._grid->_isCheckerBoarded) { if (in.checkerboard == Odd) { Clover = (inv) ? &CloverTermInvDagOdd : &CloverTermDagOdd; } else { Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven; } out = *Clover * in; } else { Clover = (inv) ? &CloverTermInv : &CloverTerm; out = adj(*Clover) * in; } } else { if (in._grid->_isCheckerBoarded) { if (in.checkerboard == Odd) { // std::cout << "Calling clover term Odd" << std::endl; Clover = (inv) ? &CloverTermInvOdd : &CloverTermOdd; } else { // std::cout << "Calling clover term Even" << std::endl; Clover = (inv) ? &CloverTermInvEven : &CloverTermEven; } out = *Clover * in; // std::cout << GridLogMessage << "*Clover.checkerboard " << (*Clover).checkerboard << std::endl; } else { Clover = (inv) ? &CloverTermInv : &CloverTerm; out = *Clover * in; } } } // MooeeInternal // Derivative parts template void WilsonCloverFermion::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag) { GridBase *grid = mat._grid; //GaugeLinkField Lambdaodd(grid), Lambdaeven(grid), tmp(grid); //Lambdaodd = zero; //Yodd*dag(Xodd)+Xodd*dag(Yodd); // I have to peek spin and decide the color structure //Lambdaeven = zero; //Teven*dag(Xeven)+Xeven*dag(Yeven) + 2*(Dee^-1) GaugeLinkField Lambda(grid), tmp(grid); Lambda = zero; conformable(mat._grid, X._grid); conformable(Y._grid, X._grid); std::vector C1p(Nd, grid), C2p(Nd, grid), C3p(Nd, grid), C4p(Nd, grid); std::vector C1m(Nd, grid), C2m(Nd, grid), C3m(Nd, grid), C4m(Nd, grid); std::vector U(Nd, mat._grid); for (int mu = 0; mu < Nd; mu++) { U[mu] = PeekIndex(mat, mu); C1p[mu] = zero; C2p[mu] = zero; C3p[mu] = zero; C4p[mu] = zero; C1m[mu] = zero; C2m[mu] = zero; C3m[mu] = zero; C4m[mu] = zero; } /* PARALLEL_FOR_LOOP for (int i = 0; i < CloverTerm._grid->oSites(); i++) { T._odata[i]()(0, 1) = timesMinusI(F._odata[i]()()); T._odata[i]()(1, 0) = timesMinusI(F._odata[i]()()); T._odata[i]()(2, 3) = timesMinusI(F._odata[i]()()); T._odata[i]()(3, 2) = timesMinusI(F._odata[i]()()); } */ for (int i = 0; i < 4; i++) { //spin for (int j = 0; j < 4; j++) { //spin for (int mu = 0; mu < 4; mu++) { //color for (int nu = 0; nu < 4; nu++) { //color // insertion in upper staple tmp = Lambda * U[nu]; C1p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu); tmp = Lambda * U[mu]; C2p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu); tmp = Impl::CovShiftIdentityForward(Lambda, nu) * U[nu]; C3p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu); tmp = Lambda; C4p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * tmp; // insertion in lower staple tmp = Lambda * U[nu]; C1m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu); tmp = Lambda * U[mu]; C2m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, U[nu])), mu); tmp = Lambda * U[nu]; C3m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu); tmp = Lambda; C4m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * tmp; } } } } //Still implementing. Have to be tested, and understood how to project EO } // Derivative parts template void WilsonCloverFermion::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag) { assert(0); // not implemented yet } FermOpTemplateInstantiate(WilsonCloverFermion); // now only for the fundamental representation //AdjointFermOpTemplateInstantiate(WilsonCloverFermion); //TwoIndexFermOpTemplateInstantiate(WilsonCloverFermion); //GparityFermOpTemplateInstantiate(WilsonCloverFermion); } }