/************************************************************************************* Grid physics library, www.github.com/paboyle/Grid Source file: Copyright (C) 2015-2016 Author: Peter Boyle <pabobyle@ph.ed.ac.uk> Author: Guido Cossu Author: David Murphy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. See the full license in the file "LICENSE" in the top level distribution directory *************************************************************************************/ /* END LEGAL */ #include <Grid/Grid.h> #ifdef GRID_DEFAULT_PRECISION_DOUBLE #define MIXED_PRECISION #endif NAMESPACE_BEGIN(Grid); /* * Need a plan for gauge field update for mixed precision in HMC (2x speed up) * -- Store the single prec action operator. * -- Clone the gauge field from the operator function argument. * -- Build the mixed precision operator dynamically from the passed operator and single prec clone. */ template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF> class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> { public: typedef typename FermionOperatorD::FermionField FieldD; typedef typename FermionOperatorF::FermionField FieldF; using OperatorFunction<FieldD>::operator(); RealD Tolerance; RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed Integer MaxInnerIterations; Integer MaxOuterIterations; GridBase* SinglePrecGrid4; //Grid for single-precision fields GridBase* SinglePrecGrid5; //Grid for single-precision fields RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance FermionOperatorF &FermOpF; FermionOperatorD &FermOpD;; SchurOperatorF &LinOpF; SchurOperatorD &LinOpD; Integer TotalInnerIterations; //Number of inner CG iterations Integer TotalOuterIterations; //Number of restarts Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step MixedPrecisionConjugateGradientOperatorFunction(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid4, GridBase* _sp_grid5, FermionOperatorF &_FermOpF, FermionOperatorD &_FermOpD, SchurOperatorF &_LinOpF, SchurOperatorD &_LinOpD): LinOpF(_LinOpF), LinOpD(_LinOpD), FermOpF(_FermOpF), FermOpD(_FermOpD), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), SinglePrecGrid4(_sp_grid4), SinglePrecGrid5(_sp_grid5), OuterLoopNormMult(100.) { /* Debugging instances of objects; references are stored std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpF " <<std::hex<< &LinOpF<<std::dec <<std::endl; std::cout << GridLogMessage << " Mixed precision CG wrapper LinOpD " <<std::hex<< &LinOpD<<std::dec <<std::endl; std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpF " <<std::hex<< &FermOpF<<std::dec <<std::endl; std::cout << GridLogMessage << " Mixed precision CG wrapper FermOpD " <<std::hex<< &FermOpD<<std::dec <<std::endl; */ }; void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) { std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl; SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU); // std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpU " <<std::hex<< &(SchurOpU->_Mat)<<std::dec <<std::endl; // std::cout << GridLogMessage << " Mixed precision CG wrapper operator() FermOpD " <<std::hex<< &(LinOpD._Mat) <<std::dec <<std::endl; // Assumption made in code to extract gauge field // We could avoid storing LinopD reference alltogether ? assert(&(SchurOpU->_Mat)==&(LinOpD._Mat)); //////////////////////////////////////////////////////////////////////////////////// // Must snarf a single precision copy of the gauge field in Linop_d argument //////////////////////////////////////////////////////////////////////////////////// typedef typename FermionOperatorF::GaugeField GaugeFieldF; typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF; typedef typename FermionOperatorD::GaugeField GaugeFieldD; typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD; GridBase * GridPtrF = SinglePrecGrid4; GridBase * GridPtrD = FermOpD.Umu.Grid(); GaugeFieldF U_f (GridPtrF); GaugeLinkFieldF Umu_f(GridPtrF); // std::cout << " Dim gauge field "<<GridPtrF->Nd()<<std::endl; // 4d // std::cout << " Dim gauge field "<<GridPtrD->Nd()<<std::endl; // 4d //////////////////////////////////////////////////////////////////////////////////// // Moving this to a Clone method of fermion operator would allow to duplicate the // physics parameters and decrease gauge field copies //////////////////////////////////////////////////////////////////////////////////// GaugeLinkFieldD Umu_d(GridPtrD); for(int mu=0;mu<Nd*2;mu++){ Umu_d = PeekIndex<LorentzIndex>(FermOpD.Umu, mu); precisionChange(Umu_f,Umu_d); PokeIndex<LorentzIndex>(FermOpF.Umu, Umu_f, mu); } pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu); pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu); //////////////////////////////////////////////////////////////////////////////////// // Could test to make sure that LinOpF and LinOpD agree to single prec? //////////////////////////////////////////////////////////////////////////////////// /* GridBase *Fgrid = psi._grid; FieldD tmp2(Fgrid); FieldD tmp1(Fgrid); LinOpU.Op(src,tmp1); LinOpD.Op(src,tmp2); std::cout << " Double gauge field "<< norm2(FermOpD.Umu)<<std::endl; std::cout << " Single gauge field "<< norm2(FermOpF.Umu)<<std::endl; std::cout << " Test of operators "<<norm2(tmp1)<<std::endl; std::cout << " Test of operators "<<norm2(tmp2)<<std::endl; tmp1=tmp1-tmp2; std::cout << " Test of operators diff "<<norm2(tmp1)<<std::endl; */ //////////////////////////////////////////////////////////////////////////////////// // Make a mixed precision conjugate gradient //////////////////////////////////////////////////////////////////////////////////// MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD); std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl; MPCG(src,psi); } }; NAMESPACE_END(Grid); int main(int argc, char **argv) { using namespace Grid; Grid_init(&argc, &argv); int threads = GridThread::GetThreads(); // here make a routine to print all the relevant information on the run std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl; // Typedefs to simplify notation typedef WilsonImplR FermionImplPolicy; typedef MobiusFermionR FermionAction; typedef MobiusFermionF FermionActionF; typedef MobiusEOFAFermionR FermionEOFAAction; typedef MobiusEOFAFermionF FermionEOFAActionF; typedef typename FermionAction::FermionField FermionField; typedef typename FermionActionF::FermionField FermionFieldF; typedef Grid::XmlReader Serialiser; //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: IntegratorParameters MD; // typedef GenericHMCRunner<LeapFrog> HMCWrapper; // MD.name = std::string("Leap Frog"); typedef GenericHMCRunner<ForceGradient> HMCWrapper; MD.name = std::string("Force Gradient"); // typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // MD.name = std::string("MinimumNorm2"); MD.MDsteps = 6; MD.trajL = 1.0; HMCparameters HMCparams; HMCparams.StartTrajectory = 590; HMCparams.Trajectories = 1000; HMCparams.NoMetropolisUntil= 0; // "[HotStart, ColdStart, TepidStart, CheckpointStart]\n"; // HMCparams.StartingType =std::string("ColdStart"); HMCparams.StartingType =std::string("CheckpointStart"); HMCparams.MD = MD; HMCWrapper TheHMC(HMCparams); // Grid from the command line arguments --grid and --mpi TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition CheckpointerParameters CPparams; CPparams.config_prefix = "ckpoint_EODWF_lat"; CPparams.rng_prefix = "ckpoint_EODWF_rng"; CPparams.saveInterval = 10; CPparams.format = "IEEE64BIG"; TheHMC.Resources.LoadNerscCheckpointer(CPparams); RNGModuleParameters RNGpar; RNGpar.serial_seeds = "1 2 3 4 5"; RNGpar.parallel_seeds = "6 7 8 9 10"; TheHMC.Resources.SetRNGSeeds(RNGpar); // Construct observables // here there is too much indirection typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs; TheHMC.Resources.AddObservable<PlaqObs>(); ////////////////////////////////////////////// const int Ls = 16; Real beta = 2.13; Real light_mass = 0.01; Real strange_mass = 0.04; Real pv_mass = 1.0; RealD M5 = 1.8; RealD b = 1.0; RealD c = 0.0; std::vector<Real> hasenbusch({ 0.1, 0.3, 0.6 }); auto GridPtr = TheHMC.Resources.GetCartesian(); auto GridRBPtr = TheHMC.Resources.GetRBCartesian(); auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr); auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr); Coordinate latt = GridDefaultLatt(); Coordinate mpi = GridDefaultMpi(); Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd()); Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd()); auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi); auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF); auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF); auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF); IwasakiGaugeActionR GaugeAction(beta); // temporarily need a gauge field LatticeGaugeField U(GridPtr); LatticeGaugeFieldF UF(GridPtrF); // These lines are unecessary if BC are all periodic std::vector<Complex> boundary = {1,1,1,-1}; FermionAction::ImplParams Params(boundary); FermionActionF::ImplParams ParamsF(boundary); double ActionStoppingCondition = 1e-10; double DerivativeStoppingCondition = 1e-6; double MaxCGIterations = 30000; //////////////////////////////////// // Collect actions //////////////////////////////////// ActionLevel<HMCWrapper::Field> Level1(1); ActionLevel<HMCWrapper::Field> Level2(8); //////////////////////////////////// // Strange action //////////////////////////////////// typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> LinearOperatorF; typedef SchurDiagMooeeOperator<FermionAction ,FermionField > LinearOperatorD; typedef SchurDiagMooeeOperator<FermionEOFAActionF,FermionFieldF> LinearOperatorEOFAF; typedef SchurDiagMooeeOperator<FermionEOFAAction ,FermionField > LinearOperatorEOFAD; typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusFermionD,MobiusFermionF,LinearOperatorD,LinearOperatorF> MxPCG; typedef MixedPrecisionConjugateGradientOperatorFunction<MobiusEOFAFermionD,MobiusEOFAFermionF,LinearOperatorEOFAD,LinearOperatorEOFAF> MxPCG_EOFA; // DJM: setup for EOFA ratio (Mobius) OneFlavourRationalParams OFRp; OFRp.lo = 0.1; OFRp.hi = 25.0; OFRp.MaxIter = 10000; OFRp.tolerance= 1.0e-9; OFRp.degree = 14; OFRp.precision= 50; MobiusEOFAFermionR Strange_Op_L (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c); MobiusEOFAFermionF Strange_Op_LF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, strange_mass, strange_mass, pv_mass, 0.0, -1, M5, b, c); MobiusEOFAFermionR Strange_Op_R (U , *FGrid , *FrbGrid , *GridPtr , *GridRBPtr , pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c); MobiusEOFAFermionF Strange_Op_RF(UF, *FGridF, *FrbGridF, *GridPtrF, *GridRBPtrF, pv_mass, strange_mass, pv_mass, -1.0, 1, M5, b, c); ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations); ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations); #ifdef MIXED_PRECISION const int MX_inner = 1000; // Mixed precision EOFA LinearOperatorEOFAD Strange_LinOp_L (Strange_Op_L); LinearOperatorEOFAD Strange_LinOp_R (Strange_Op_R); LinearOperatorEOFAF Strange_LinOp_LF(Strange_Op_LF); LinearOperatorEOFAF Strange_LinOp_RF(Strange_Op_RF); MxPCG_EOFA ActionCGL(ActionStoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_LF,Strange_Op_L, Strange_LinOp_LF,Strange_LinOp_L); MxPCG_EOFA DerivativeCGL(DerivativeStoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_LF,Strange_Op_L, Strange_LinOp_LF,Strange_LinOp_L); MxPCG_EOFA ActionCGR(ActionStoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_RF,Strange_Op_R, Strange_LinOp_RF,Strange_LinOp_R); MxPCG_EOFA DerivativeCGR(DerivativeStoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, Strange_Op_RF,Strange_Op_R, Strange_LinOp_RF,Strange_LinOp_R); ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> EOFA(Strange_Op_L, Strange_Op_R, ActionCG, ActionCGL, ActionCGR, DerivativeCGL, DerivativeCGR, OFRp, true); #else ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> EOFA(Strange_Op_L, Strange_Op_R, ActionCG, ActionCG, ActionCG, DerivativeCG, DerivativeCG, OFRp, true); #endif Level1.push_back(&EOFA); //////////////////////////////////// // up down action //////////////////////////////////// std::vector<Real> light_den; std::vector<Real> light_num; int n_hasenbusch = hasenbusch.size(); light_den.push_back(light_mass); for(int h=0;h<n_hasenbusch;h++){ light_den.push_back(hasenbusch[h]); light_num.push_back(hasenbusch[h]); } light_num.push_back(pv_mass); ////////////////////////////////////////////////////////////// // Forced to replicate the MxPCG and DenominatorsF etc.. because // there is no convenient way to "Clone" physics params from double op // into single op for any operator pair. // Same issue prevents using MxPCG in the Heatbath step ////////////////////////////////////////////////////////////// std::vector<FermionAction *> Numerators; std::vector<FermionAction *> Denominators; std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients; std::vector<MxPCG *> ActionMPCG; std::vector<MxPCG *> MPCG; std::vector<FermionActionF *> DenominatorsF; std::vector<LinearOperatorD *> LinOpD; std::vector<LinearOperatorF *> LinOpF; for(int h=0;h<n_hasenbusch+1;h++){ std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl; Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, Params)); Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, Params)); #ifdef MIXED_PRECISION //////////////////////////////////////////////////////////////////////////// // Mixed precision CG for 2f force //////////////////////////////////////////////////////////////////////////// DenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, ParamsF)); LinOpD.push_back(new LinearOperatorD(*Denominators[h])); LinOpF.push_back(new LinearOperatorF(*DenominatorsF[h])); MPCG.push_back(new MxPCG(DerivativeStoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, *DenominatorsF[h],*Denominators[h], *LinOpF[h], *LinOpD[h]) ); ActionMPCG.push_back(new MxPCG(ActionStoppingCondition, MX_inner, MaxCGIterations, GridPtrF, FrbGridF, *DenominatorsF[h],*Denominators[h], *LinOpF[h], *LinOpD[h]) ); // Heatbath not mixed yet. As inverts numerators not so important as raised mass. Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG)); #else //////////////////////////////////////////////////////////////////////////// // Standard CG for 2f force //////////////////////////////////////////////////////////////////////////// Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],DerivativeCG,ActionCG)); #endif } for(int h=0;h<n_hasenbusch+1;h++){ Level1.push_back(Quotients[h]); } ///////////////////////////////////////////////////////////// // Gauge action ///////////////////////////////////////////////////////////// Level2.push_back(&GaugeAction); TheHMC.TheAction.push_back(Level1); TheHMC.TheAction.push_back(Level2); std::cout << GridLogMessage << " Action complete "<< std::endl; ///////////////////////////////////////////////////////////// // HMC parameters are serialisable std::cout << GridLogMessage << " Running the HMC "<< std::endl; TheHMC.Run(); // no smearing Grid_finalize(); } // main