1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-19 16:55:37 +01:00
Grid/benchmarks/Benchmark_schur.cc
2020-05-10 05:24:26 -04:00

177 lines
7.0 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_dwf.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
void benchDw(std::vector<int> & L, int Ls);
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=12;
std::vector< std::vector<int> > latts;
#if 1
latts.push_back(std::vector<int> ({24,24,24,24}) );
latts.push_back(std::vector<int> ({48,24,24,24}) );
latts.push_back(std::vector<int> ({96,24,24,24}) );
latts.push_back(std::vector<int> ({96,48,24,24}) );
// latts.push_back(std::vector<int> ({96,48,48,24}) );
// latts.push_back(std::vector<int> ({96,48,48,48}) );
#else
// latts.push_back(std::vector<int> ({96,48,48,48}) );
latts.push_back(std::vector<int> ({96,96,96,192}) );
#endif
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "=========================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking DWF"<<std::endl;
std::cout<<GridLogMessage << "=========================================================================="<<std::endl;
std::cout<<GridLogMessage << "Volume \t\t\tProcs \t SchurDiagOne "<<std::endl;
std::cout<<GridLogMessage << "=========================================================================="<<std::endl;
for (int l=0;l<latts.size();l++){
std::vector<int> latt4 = latts[l];
std::cout << GridLogMessage <<"\t";
for(int d=0;d<Nd;d++){
std::cout<<latt4[d]<<"x";
}
std::cout <<Ls<<"\t" ;
benchDw (latt4,Ls);
}
std::cout<<GridLogMessage << "=========================================================================="<<std::endl;
Grid_finalize();
}
void benchDw(std::vector<int> & latt4, int Ls)
{
/////////////////////////////////////////////////////////////////////////////////////
// for Nc=3
/////////////////////////////////////////////////////////////////////////////////////
// Dw : Ls*24*(7+48)= Ls*1320
//
// M5D: Ls*(4*2*Nc mul + 4*2*Nc madd ) = 3*4*2*Nc*Ls = Ls*72
// Meo: Ls*24*(7+48) + Ls*72 = Ls*1392
//
// Mee: 3*Ns*2*Nc*Ls // Chroma 6*N5*Nc*Ns
//
// LeemInv : 2*2*Nc*madd*Ls
// LeeInv : 2*2*Nc*madd*Ls
// DeeInv : 4*2*Nc*mul *Ls
// UeeInv : 2*2*Nc*madd*Ls
// UeemInv : 2*2*Nc*madd*Ls = Nc*Ls*(8+8+8+8+8) = 40*Nc*Ls// Chroma (10*N5 - 8)*Nc*Ns ~ (40 N5 - 32)Nc flops
// QUDA counts as dense LsxLs real matrix x Ls x NcNsNreim => Nc*4*2 x Ls^2 FMA = 16Nc Ls^2 flops
// Mpc => 1452*cbvol*2*Ls flops //
// => (1344+Ls*48)*Ls*cbvol*2 flops QUDA = 1920 @Ls=12 and 2112 @Ls=16
/////////////////////////////////////////////////////////////////////////////////////
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(latt4, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// long unsigned int single_site_flops = 8*Nc*(7+16*Nc)*Ls;
long unsigned int single_site_mpc_flops = 8*Nc*(7+16*Nc)*2*Ls + 40*Nc*2*Ls + 4*Nc*2*Ls;
long unsigned int single_site_quda_flops = 8*Nc*(7+16*Nc)*2*Ls + 16*Nc*Ls*Ls + 4*Nc*2*Ls;
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
ColourMatrixF cm = ComplexF(1.0,0.0);
int ncall=300;
RealD mass=0.1;
RealD M5 =1.8;
RealD NP = UGrid->_Nprocessors;
double volume=1; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
LatticeGaugeFieldF Umu(UGrid); Umu=Zero();
MobiusFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.5,0.5);
LatticeFermionF src_o (FrbGrid); src_o=1.0;
LatticeFermionF r_o (FrbGrid); r_o=Zero();
int order =151;
SchurDiagOneOperator<MobiusFermionF,LatticeFermionF> Mpc(Dw);
Chebyshev<LatticeFermionF> Cheby(0.0,60.0,order);
{
Mpc.Mpc(src_o,r_o);
Mpc.Mpc(src_o,r_o);
Mpc.Mpc(src_o,r_o);
double t0=usecond();
for(int i=0;i<ncall;i++){
Mpc.Mpc(src_o,r_o);
}
double t1=usecond();
double flops=(single_site_mpc_flops*volume*ncall); // Mpc has 1 - Moo^-1 Moe Mee^-1 Meo so CB cancels.
std::cout <<"\t"<<NP<< "\t"<<flops/(t1-t0);
flops=(single_site_quda_flops*volume*ncall);
std::cout <<"\t"<<flops/(t1-t0)<<"\t"<<(t1-t0)/1000./1000.<<" s\t";
// Cheby uses MpcDagMpc so 2x flops
for(int i=0;i<1;i++){
Cheby(Mpc,src_o,r_o);
t0=usecond();
Cheby(Mpc,src_o,r_o);
t1=usecond();
flops=(single_site_mpc_flops*volume*2*order);
std::cout <<"\t"<<flops/(t1-t0);
flops=(single_site_quda_flops*volume*2*order);
std::cout <<"\t"<<flops/(t1-t0) << "\t" << (t1-t0)/1000./1000. <<" s";
std::cout <<std::endl;
}
}
// Dw.Report();
}