1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/Grid_cshift_fake.h
Peter Boyle 02262b0019 Bringing in LatticeInteger with the idea of implemented predicated
assignment, subsets etc.
c.f the QDP++ "where" syntax
2015-04-06 06:30:48 +01:00

249 lines
7.5 KiB
C++

#ifndef _GRID_FAKE_H_
#define _GRID_FAKE_H_
friend Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
Lattice<vobj> ret(rhs._grid);
GridBase *grid=rhs._grid;
const int Nsimd = grid->Nsimd();
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
//int ld = rhs._grid->_ldimensions[dimension];
//int gd = rhs._grid->_gdimensions[dimension];
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift);
// the permute type
int permute_dim =rhs._grid->_simd_layout[dimension]>1 ;
int permute_type=0;
for(int d=0;d<dimension;d++){
if (rhs._grid->_simd_layout[d]>1 ) permute_type++;
}
///////////////////////////////////////////////
// Move via a fake comms buffer
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
int words = sizeof(vobj)/sizeof(vector_type);
std::vector<vobj,alignedAllocator<vobj> > comm_buf(buffer_size);
std::vector<std::vector<scalar_type> > comm_buf_extract(Nsimd,std::vector<scalar_type>(buffer_size*words) );
std::vector<scalar_type *> pointers(Nsimd);
for(int x=0;x<rd;x++){
for(int i=0;i<Nsimd;i++){
pointers[i] = (scalar_type *)&comm_buf_extract[i][0];
}
int ro = x*rhs._grid->_ostride[dimension]; // base offset for result
if ( permute_dim ) {
int o = 0; // relative offset to base
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
for(int b=0;b<rhs._grid->_slice_block[dimension];b++){
int sshift = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,o+b);
int sx = (x+sshift)%rd;
// base offset for source
int so = sx*rhs._grid->_ostride[dimension];
int permute_slice=0;
int wrap = sshift/rd;
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = 1-wrap;
if ( permute_slice ) {
extract(rhs._odata[so+o+b],pointers);
} else {
ret._odata[ro+o+b]=rhs._odata[so+o+b];
}
}
o +=rhs._grid->_slice_stride[dimension];
}
for(int i=0;i<Nsimd;i++){
pointers[i] = (scalar_type *)&comm_buf_extract[permute_map[permute_type][i]][0];
}
o = 0; // relative offset to base
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
for(int b=0;b<rhs._grid->_slice_block[dimension];b++){
int sshift = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,o+b);
int sx = (x+sshift)%rd;
// base offset for source
int so = sx*rhs._grid->_ostride[dimension];
int permute_slice=0;
int wrap = sshift/rd;
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = 1-wrap;
if ( permute_slice ) {
merge(ret._odata[ro+o+b],pointers);
}
}
o +=rhs._grid->_slice_stride[dimension];
}
} else {
int co; // comm offset
int o;
co=0; o=0;
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
for(int b=0;b<rhs._grid->_slice_block[dimension];b++){
// This call in inner loop is annoying but necessary for dimension=0
// in the case of RedBlack grids. Could optimise away with
// alternate code paths for all other cases.
int sshift = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,o+b);
int sx = (x+sshift)%rd;
int so = sx*rhs._grid->_ostride[dimension];
comm_buf[co++]=rhs._odata[so+o+b];
}
o +=rhs._grid->_slice_stride[dimension];
}
// Step through a copy into a comms buffer and pull back in.
// Genuine fake implementation could calculate if loops back
co=0; o=0;
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
for(int b=0;b<rhs._grid->_slice_block[dimension];b++){
ret._odata[ro+o+b]=comm_buf[co++];
}
o +=rhs._grid->_slice_stride[dimension];
}
}
}
return ret;
}
/*
friend Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int shift)
{
Lattice<vobj> ret(rhs._grid);
int rd = rhs._grid->_rdimensions[dimension];
int ld = rhs._grid->_ldimensions[dimension];
int gd = rhs._grid->_gdimensions[dimension];
// Map to always positive shift.
shift = (shift+gd)%gd;
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift);
shift = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift);
// Work out whether to permute and the permute type
// ABCDEFGH -> AE BF CG DH permute
// Shift 0 AE BF CG DH 0 0 0 0 ABCDEFGH
// Shift 1 BF CG DH AE 0 0 0 1 BCDEFGHA
// Shift 2 CG DH AE BF 0 0 1 1 CDEFGHAB
// Shift 3 DH AE BF CG 0 1 1 1 DEFGHABC
// Shift 4 AE BF CG DH 1 1 1 1 EFGHABCD
// Shift 5 BF CG DH AE 1 1 1 0 FGHACBDE
// Shift 6 CG DH AE BF 1 1 0 0 GHABCDEF
// Shift 7 DH AE BF CG 1 0 0 0 HABCDEFG
int permute_dim =rhs._grid->_simd_layout[dimension]>1 ;
int permute_type=0;
for(int d=0;d<dimension;d++)
if (rhs._grid->_simd_layout[d]>1 ) permute_type++;
// loop over all work
int work =rd*rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
// Packed gather sequence is clean
int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
typedef typename vobj::scalar_type scalar_t;
typedef typename vobj::vector_type vector_t;
const int ns=sizeof(vobj)/sizeof(scalar_t);
const int nv=sizeof(vobj)/sizeof(vector_t);
std::vector<vobj,alignedAllocator<vobj> > comm_buf(buffer_size);
for(int x=0;x<rd;x++){
int sx = (x+shift)%rd;
int o = x*rhs._grid->_ostride[dimension];
int so =sx*rhs._grid->_ostride[dimension];
int permute_slice=0;
if ( permute_dim ) {
permute_slice = shift/rd;
if ( x<shift%rd ) permute_slice = 1-permute_slice;
}
if ( permute_slice ) {
exit(0);
// For fake communication ALWAYS extract and either merge one way or other
scalar_t * bptr = (scalar_t *) &comm_buf[0];
int bo=0;
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
vector_t *optr = (vector_t *)&ret._odata[o];
vector_t *iptr = (vector_t *)&rhs._odata[so];
int skew = buffer_size*ns/2;
for(int b=0;b<rhs._grid->_slice_block[dimension];b++){
for(int n=0;n<nv;n++){// number of simd vecsscalars in a vector
extract(iptr[b*nv+n],&bptr[n],skew,permute_type);
}
}
o+=rhs._grid->_slice_stride[dimension];
// bo+=rhs._grid->_slice_stride[dimension]*ns/2;
}
} else {
int bo=0;
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
for(int i=0;i<rhs._grid->_slice_block[dimension];i++){
comm_buf[bo++] =rhs._odata[so+i];
}
so+=rhs._grid->_slice_stride[dimension];
}
bo=0;
for(int n=0;n<rhs._grid->_slice_nblock[dimension];n++){
for(int i=0;i<rhs._grid->_slice_block[dimension];i++){
ret._odata[o+i]=comm_buf[bo++];
}
o+=rhs._grid->_slice_stride[dimension];
}
}
}
return ret;
};
*/
#endif