mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 19:25:56 +01:00
832 lines
26 KiB
C++
832 lines
26 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/fermion/WilsonFermion5D.cc
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
|
|
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Grid/qcd/action/fermion/FermionCore.h>
|
|
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
|
|
#include <Grid/perfmon/PerfCount.h>
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
// 5d lattice for DWF.
|
|
template<class Impl>
|
|
WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
|
GridCartesian &FiveDimGrid,
|
|
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
|
GridCartesian &FourDimGrid,
|
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
|
RealD _M5,const ImplParams &p) :
|
|
Kernels(p),
|
|
_FiveDimGrid (&FiveDimGrid),
|
|
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
|
|
_FourDimGrid (&FourDimGrid),
|
|
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
|
|
Stencil (_FiveDimGrid,npoint,Even,directions,displacements,p),
|
|
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements,p), // source is Even
|
|
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements,p), // source is Odd
|
|
M5(_M5),
|
|
Umu(_FourDimGrid),
|
|
UmuEven(_FourDimRedBlackGrid),
|
|
UmuOdd (_FourDimRedBlackGrid),
|
|
_tmp(&FiveDimRedBlackGrid),
|
|
Dirichlet(0)
|
|
{
|
|
// some assertions
|
|
assert(FiveDimGrid._ndimension==5);
|
|
assert(FourDimGrid._ndimension==4);
|
|
assert(FourDimRedBlackGrid._ndimension==4);
|
|
assert(FiveDimRedBlackGrid._ndimension==5);
|
|
assert(FiveDimRedBlackGrid._checker_dim==1); // Don't checker the s direction
|
|
|
|
// extent of fifth dim and not spread out
|
|
Ls=FiveDimGrid._fdimensions[0];
|
|
assert(FiveDimRedBlackGrid._fdimensions[0]==Ls);
|
|
assert(FiveDimGrid._processors[0] ==1);
|
|
assert(FiveDimRedBlackGrid._processors[0] ==1);
|
|
|
|
// Other dimensions must match the decomposition of the four-D fields
|
|
for(int d=0;d<4;d++){
|
|
|
|
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
|
|
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
|
|
assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]);
|
|
|
|
assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]);
|
|
assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]);
|
|
assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]);
|
|
|
|
assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]);
|
|
assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]);
|
|
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
|
|
}
|
|
|
|
if ( p.dirichlet.size() == Nd+1) {
|
|
Coordinate block = p.dirichlet;
|
|
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
|
|
Dirichlet = 1;
|
|
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
|
|
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
|
|
Block = block;
|
|
}
|
|
} else {
|
|
Coordinate block(Nd+1,0);
|
|
Block = block;
|
|
}
|
|
|
|
if (Impl::LsVectorised) {
|
|
|
|
int nsimd = Simd::Nsimd();
|
|
|
|
// Dimension zero of the five-d is the Ls direction
|
|
assert(FiveDimGrid._simd_layout[0] ==nsimd);
|
|
assert(FiveDimRedBlackGrid._simd_layout[0]==nsimd);
|
|
|
|
for(int d=0;d<4;d++){
|
|
assert(FourDimGrid._simd_layout[d]==1);
|
|
assert(FourDimRedBlackGrid._simd_layout[d]==1);
|
|
assert(FiveDimRedBlackGrid._simd_layout[d+1]==1);
|
|
}
|
|
|
|
} else {
|
|
|
|
// Dimension zero of the five-d is the Ls direction
|
|
assert(FiveDimRedBlackGrid._simd_layout[0]==1);
|
|
assert(FiveDimGrid._simd_layout[0] ==1);
|
|
|
|
}
|
|
|
|
// Allocate the required comms buffer
|
|
ImportGauge(_Umu);
|
|
// Build lists of exterior only nodes
|
|
int LLs = FiveDimGrid._rdimensions[0];
|
|
int vol4;
|
|
vol4=FourDimGrid.oSites();
|
|
Stencil.BuildSurfaceList(LLs,vol4);
|
|
|
|
vol4=FourDimRedBlackGrid.oSites();
|
|
StencilEven.BuildSurfaceList(LLs,vol4);
|
|
StencilOdd.BuildSurfaceList(LLs,vol4);
|
|
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
|
|
{
|
|
GaugeField HUmu(_Umu.Grid());
|
|
HUmu = _Umu*(-0.5);
|
|
if ( Dirichlet ) {
|
|
|
|
if ( this->Params.partialDirichlet ) {
|
|
std::cout << GridLogMessage << " partialDirichlet BCs " <<Block<<std::endl;
|
|
} else {
|
|
std::cout << GridLogMessage << " FULL Dirichlet BCs " <<Block<<std::endl;
|
|
}
|
|
|
|
std:: cout << GridLogMessage << "Checking block size multiple of rank boundaries for Dirichlet"<<std::endl;
|
|
for(int d=0;d<Nd;d++) {
|
|
int GaugeBlock = Block[d+1];
|
|
int ldim=GaugeGrid()->LocalDimensions()[d];
|
|
if (GaugeBlock) assert( (GaugeBlock%ldim)==0);
|
|
}
|
|
|
|
if (!this->Params.partialDirichlet) {
|
|
std::cout << GridLogMessage << " Dirichlet filtering gauge field BCs block " <<Block<<std::endl;
|
|
Coordinate GaugeBlock(Nd);
|
|
for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
|
|
DirichletFilter<GaugeField> Filter(GaugeBlock);
|
|
Filter.applyFilter(HUmu);
|
|
} else {
|
|
std::cout << GridLogMessage << " Dirichlet "<< Dirichlet << " NOT filtered gauge field" <<std::endl;
|
|
}
|
|
}
|
|
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
|
|
pickCheckerboard(Even,UmuEven,Umu);
|
|
pickCheckerboard(Odd ,UmuOdd,Umu);
|
|
}
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
|
|
{
|
|
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
|
|
// we drop off the innermost fifth dimension
|
|
// assert( (disp==1)||(disp==-1) );
|
|
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
|
|
|
|
int skip = (disp==1) ? 0 : 1;
|
|
int dirdisp = dir+skip*4;
|
|
int gamma = dir+(1-skip)*4;
|
|
|
|
Compressor compressor(DaggerNo);
|
|
Stencil.HaloExchange(in,compressor);
|
|
|
|
uint64_t Nsite = Umu.Grid()->oSites();
|
|
Kernels::DhopDirKernel(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out,dirdisp,gamma);
|
|
|
|
};
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
|
|
{
|
|
Compressor compressor(DaggerNo);
|
|
Stencil.HaloExchange(in,compressor);
|
|
uint64_t Nsite = Umu.Grid()->oSites();
|
|
Kernels::DhopDirAll(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out);
|
|
};
|
|
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
|
|
DoubledGaugeField & U,
|
|
GaugeField &mat,
|
|
const FermionField &A,
|
|
const FermionField &B,
|
|
int dag)
|
|
{
|
|
assert((dag==DaggerNo) ||(dag==DaggerYes));
|
|
|
|
conformable(st.Grid(),A.Grid());
|
|
conformable(st.Grid(),B.Grid());
|
|
|
|
Compressor compressor(dag);
|
|
|
|
FermionField Btilde(B.Grid());
|
|
FermionField Atilde(B.Grid());
|
|
|
|
st.HaloExchange(B,compressor);
|
|
|
|
Atilde=A;
|
|
int LLs = B.Grid()->_rdimensions[0];
|
|
|
|
|
|
for (int mu = 0; mu < Nd; mu++) {
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Flip gamma if dag
|
|
////////////////////////////////////////////////////////////////////////
|
|
int gamma = mu;
|
|
if (!dag) gamma += Nd;
|
|
|
|
////////////////////////
|
|
// Call the single hop
|
|
////////////////////////
|
|
|
|
int Usites = U.Grid()->oSites();
|
|
|
|
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
|
|
|
|
////////////////////////////
|
|
// spin trace outer product
|
|
////////////////////////////
|
|
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopDeriv(GaugeField &mat,
|
|
const FermionField &A,
|
|
const FermionField &B,
|
|
int dag)
|
|
{
|
|
conformable(A.Grid(),FermionGrid());
|
|
conformable(A.Grid(),B.Grid());
|
|
|
|
//conformable(GaugeGrid(),mat.Grid());// this is not general! leaving as a comment
|
|
|
|
mat.Checkerboard() = A.Checkerboard();
|
|
// mat.checkerboard = A.checkerboard;
|
|
|
|
DerivInternal(Stencil,Umu,mat,A,B,dag);
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopDerivEO(GaugeField &mat,
|
|
const FermionField &A,
|
|
const FermionField &B,
|
|
int dag)
|
|
{
|
|
conformable(A.Grid(),FermionRedBlackGrid());
|
|
conformable(A.Grid(),B.Grid());
|
|
|
|
assert(B.Checkerboard()==Odd);
|
|
assert(A.Checkerboard()==Even);
|
|
mat.Checkerboard() = Even;
|
|
|
|
DerivInternal(StencilOdd,UmuEven,mat,A,B,dag);
|
|
}
|
|
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
|
|
const FermionField &A,
|
|
const FermionField &B,
|
|
int dag)
|
|
{
|
|
conformable(A.Grid(),FermionRedBlackGrid());
|
|
conformable(A.Grid(),B.Grid());
|
|
|
|
assert(B.Checkerboard()==Even);
|
|
assert(A.Checkerboard()==Odd);
|
|
mat.Checkerboard() = Odd;
|
|
|
|
DerivInternal(StencilEven,UmuOdd,mat,A,B,dag);
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st,
|
|
DoubledGaugeField & U,
|
|
const FermionField &in, FermionField &out,int dag)
|
|
{
|
|
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
|
|
DhopInternalOverlappedComms(st,U,in,out,dag);
|
|
else
|
|
DhopInternalSerialComms(st,U,in,out,dag);
|
|
}
|
|
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st,
|
|
DoubledGaugeField & U,
|
|
const FermionField &in, FermionField &out,int dag)
|
|
{
|
|
GRID_TRACE("DhopInternalOverlappedComms");
|
|
Compressor compressor(dag);
|
|
|
|
int LLs = in.Grid()->_rdimensions[0];
|
|
int len = U.Grid()->oSites();
|
|
|
|
/////////////////////////////
|
|
// Start comms // Gather intranode and extra node differentiated??
|
|
/////////////////////////////
|
|
{
|
|
// std::cout << " WilsonFermion5D gather " <<std::endl;
|
|
GRID_TRACE("Gather");
|
|
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
|
|
}
|
|
|
|
// std::cout << " WilsonFermion5D Communicate Begin " <<std::endl;
|
|
std::vector<std::vector<CommsRequest_t> > requests;
|
|
auto id=traceStart("Communicate overlapped");
|
|
st.CommunicateBegin(requests);
|
|
|
|
/////////////////////////////
|
|
// Overlap with comms
|
|
/////////////////////////////
|
|
{
|
|
// std::cout << " WilsonFermion5D Comms merge " <<std::endl;
|
|
GRID_TRACE("MergeSHM");
|
|
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
|
}
|
|
|
|
/////////////////////////////
|
|
// do the compute interior
|
|
/////////////////////////////
|
|
// std::cout << " WilsonFermion5D Interior " <<std::endl;
|
|
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
|
|
if (dag == DaggerYes) {
|
|
GRID_TRACE("DhopDagInterior");
|
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
|
} else {
|
|
GRID_TRACE("DhopInterior");
|
|
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
|
}
|
|
|
|
/////////////////////////////
|
|
// Complete comms
|
|
/////////////////////////////
|
|
// std::cout << " WilsonFermion5D Comms Complete " <<std::endl;
|
|
st.CommunicateComplete(requests);
|
|
traceStop(id);
|
|
|
|
/////////////////////////////
|
|
// do the compute exterior
|
|
/////////////////////////////
|
|
{
|
|
// std::cout << " WilsonFermion5D Comms Merge " <<std::endl;
|
|
GRID_TRACE("Merge");
|
|
st.CommsMerge(compressor);
|
|
}
|
|
|
|
|
|
// std::cout << " WilsonFermion5D Exterior " <<std::endl;
|
|
if (dag == DaggerYes) {
|
|
GRID_TRACE("DhopDagExterior");
|
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
|
} else {
|
|
GRID_TRACE("DhopExterior");
|
|
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
|
}
|
|
// std::cout << " WilsonFermion5D Done " <<std::endl;
|
|
}
|
|
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
|
|
DoubledGaugeField & U,
|
|
const FermionField &in,
|
|
FermionField &out,int dag)
|
|
{
|
|
GRID_TRACE("DhopInternalSerialComms");
|
|
Compressor compressor(dag);
|
|
|
|
int LLs = in.Grid()->_rdimensions[0];
|
|
|
|
// std::cout << " WilsonFermion5D Halo exch " <<std::endl;
|
|
{
|
|
GRID_TRACE("HaloExchange");
|
|
st.HaloExchangeOpt(in,compressor);
|
|
}
|
|
|
|
// std::cout << " WilsonFermion5D Dhop " <<std::endl;
|
|
int Opt = WilsonKernelsStatic::Opt;
|
|
if (dag == DaggerYes) {
|
|
GRID_TRACE("DhopDag");
|
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
|
} else {
|
|
GRID_TRACE("Dhop");
|
|
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
|
}
|
|
// std::cout << " WilsonFermion5D Done " <<std::endl;
|
|
}
|
|
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
|
|
{
|
|
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
|
conformable(in.Grid(),out.Grid()); // drops the cb check
|
|
|
|
assert(in.Checkerboard()==Even);
|
|
out.Checkerboard() = Odd;
|
|
|
|
DhopInternal(StencilEven,UmuOdd,in,out,dag);
|
|
}
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
|
{
|
|
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
|
conformable(in.Grid(),out.Grid()); // drops the cb check
|
|
|
|
assert(in.Checkerboard()==Odd);
|
|
out.Checkerboard() = Even;
|
|
|
|
DhopInternal(StencilOdd,UmuEven,in,out,dag);
|
|
}
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
|
{
|
|
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
|
conformable(in.Grid(),out.Grid());
|
|
|
|
out.Checkerboard() = in.Checkerboard();
|
|
|
|
DhopInternal(Stencil,Umu,in,out,dag);
|
|
}
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
|
|
{
|
|
out.Checkerboard()=in.Checkerboard();
|
|
Dhop(in,out,dag); // -0.5 is included
|
|
axpy(out,4.0-M5,in,out);
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in, RealD mass,std::vector<double> twist)
|
|
{
|
|
// what type LatticeComplex
|
|
GridBase *_grid = _FourDimGrid;
|
|
GridBase *_5dgrid = _FiveDimGrid;
|
|
|
|
conformable(_5dgrid,out.Grid());
|
|
|
|
FermionField PRsource(_5dgrid);
|
|
FermionField PLsource(_5dgrid);
|
|
FermionField buf1_4d(_grid);
|
|
FermionField buf2_4d(_grid);
|
|
FermionField GR(_5dgrid);
|
|
FermionField GL(_5dgrid);
|
|
FermionField bufL_4d(_grid);
|
|
FermionField bufR_4d(_grid);
|
|
|
|
unsigned int Ls = in.Grid()->_rdimensions[0];
|
|
|
|
typedef typename FermionField::vector_type vector_type;
|
|
typedef typename FermionField::scalar_type ScalComplex;
|
|
typedef iSinglet<ScalComplex> Tcomplex;
|
|
typedef Lattice<iSinglet<vector_type> > LatComplex;
|
|
|
|
Gamma::Algebra Gmu [] = {
|
|
Gamma::Algebra::GammaX,
|
|
Gamma::Algebra::GammaY,
|
|
Gamma::Algebra::GammaZ,
|
|
Gamma::Algebra::GammaT
|
|
};
|
|
|
|
Gamma g5(Gamma::Algebra::Gamma5);
|
|
|
|
Coordinate latt_size = _grid->_fdimensions;
|
|
|
|
LatComplex sk(_grid); sk = Zero();
|
|
LatComplex sk2(_grid); sk2= Zero();
|
|
LatComplex W(_grid); W= Zero();
|
|
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
|
|
LatComplex cosha(_grid);
|
|
LatComplex kmu(_grid);
|
|
LatComplex Wea(_grid);
|
|
LatComplex Wema(_grid);
|
|
LatComplex ea(_grid);
|
|
LatComplex ema(_grid);
|
|
LatComplex eaLs(_grid);
|
|
LatComplex emaLs(_grid);
|
|
LatComplex ea2Ls(_grid);
|
|
LatComplex ema2Ls(_grid);
|
|
LatComplex sinha(_grid);
|
|
LatComplex sinhaLs(_grid);
|
|
LatComplex coshaLs(_grid);
|
|
LatComplex A(_grid);
|
|
LatComplex F(_grid);
|
|
LatComplex App(_grid);
|
|
LatComplex Amm(_grid);
|
|
LatComplex Bpp(_grid);
|
|
LatComplex Bmm(_grid);
|
|
LatComplex ABpm(_grid); //Apm=Amp=Bpm=Bmp
|
|
LatComplex signW(_grid);
|
|
|
|
ScalComplex ci(0.0,1.0);
|
|
|
|
for(int mu=0;mu<Nd;mu++) {
|
|
|
|
LatticeCoordinate(kmu,mu);
|
|
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
|
|
kmu = TwoPiL * kmu;
|
|
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
|
|
|
|
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
|
|
sk = sk + sin(kmu) *sin(kmu);
|
|
}
|
|
|
|
W = one - M5 + sk2;
|
|
|
|
////////////////////////////////////////////
|
|
// Cosh alpha -> alpha
|
|
////////////////////////////////////////////
|
|
cosha = (one + W*W + sk) / (abs(W)*2.0);
|
|
|
|
ea = (cosha + sqrt(cosha*cosha-one));
|
|
ema= (cosha - sqrt(cosha*cosha-one));
|
|
eaLs = pow(ea,Ls);
|
|
emaLs= pow(ema,Ls);
|
|
ea2Ls = pow(ea,2.0*Ls);
|
|
ema2Ls= pow(ema,2.0*Ls);
|
|
Wea= abs(W) * ea;
|
|
Wema= abs(W) * ema;
|
|
// a=log(ea);
|
|
|
|
sinha = 0.5*(ea - ema);
|
|
sinhaLs = 0.5*(eaLs-emaLs);
|
|
coshaLs = 0.5*(eaLs+emaLs);
|
|
|
|
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
|
|
F = eaLs * (one - Wea + (Wema - one) * mass*mass);
|
|
F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
|
|
F = F - abs(W) * sinha * 4.0 * mass;
|
|
|
|
Bpp = (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
|
|
Bmm = (A/F) * (one - ea2Ls) * (one - Wea) * (one - mass*mass * one);
|
|
App = (A/F) * (ema2Ls - one) * ema * (ema - abs(W)) * (one - mass*mass * one);
|
|
Amm = (A/F) * (one - ea2Ls) * ea * (ea - abs(W)) * (one - mass*mass * one);
|
|
ABpm = (A/F) * abs(W) * sinha * 2.0 * (one + mass * coshaLs * 2.0 + mass*mass * one);
|
|
|
|
//P+ source, P- source
|
|
PRsource = (in + g5 * in) * 0.5;
|
|
PLsource = (in - g5 * in) * 0.5;
|
|
|
|
//calculate GR, GL
|
|
for(unsigned int ss=1;ss<=Ls;ss++)
|
|
{
|
|
bufR_4d = Zero();
|
|
bufL_4d = Zero();
|
|
for(unsigned int tt=1;tt<=Ls;tt++)
|
|
{
|
|
//possible sign if W<0
|
|
if((ss+tt)%2==1) signW = abs(W)/W;
|
|
else signW = one;
|
|
|
|
unsigned int f = (ss > tt) ? ss-tt : tt-ss; //f = abs(ss-tt)
|
|
//GR
|
|
buf1_4d = Zero();
|
|
ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
|
|
//G(s,t)
|
|
bufR_4d = bufR_4d + A * eaLs * pow(ema,f) * signW * buf1_4d + A * emaLs * pow(ea,f) * signW * buf1_4d;
|
|
//A++*exp(a(s+t))
|
|
bufR_4d = bufR_4d + App * pow(ea,ss) * pow(ea,tt) * signW * buf1_4d ;
|
|
//A+-*exp(a(s-t))
|
|
bufR_4d = bufR_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf1_4d ;
|
|
//A-+*exp(a(-s+t))
|
|
bufR_4d = bufR_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf1_4d ;
|
|
//A--*exp(a(-s-t))
|
|
bufR_4d = bufR_4d + Amm * pow(ema,ss) * pow(ema,tt) * signW * buf1_4d ;
|
|
|
|
//GL
|
|
buf2_4d = Zero();
|
|
ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
|
|
//G(s,t)
|
|
bufL_4d = bufL_4d + A * eaLs * pow(ema,f) * signW * buf2_4d + A * emaLs * pow(ea,f) * signW * buf2_4d;
|
|
//B++*exp(a(s+t))
|
|
bufL_4d = bufL_4d + Bpp * pow(ea,ss) * pow(ea,tt) * signW * buf2_4d ;
|
|
//B+-*exp(a(s-t))
|
|
bufL_4d = bufL_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf2_4d ;
|
|
//B-+*exp(a(-s+t))
|
|
bufL_4d = bufL_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf2_4d ;
|
|
//B--*exp(a(-s-t))
|
|
bufL_4d = bufL_4d + Bmm * pow(ema,ss) * pow(ema,tt) * signW * buf2_4d ;
|
|
}
|
|
InsertSlice(bufR_4d, GR, (ss-1), 0);
|
|
InsertSlice(bufL_4d, GL, (ss-1), 0);
|
|
}
|
|
|
|
//calculate propagator
|
|
for(unsigned int ss=1;ss<=Ls;ss++)
|
|
{
|
|
bufR_4d = Zero();
|
|
bufL_4d = Zero();
|
|
|
|
//(i*gamma_mu*sin(p_mu) - W)*(GL*P- source)
|
|
buf1_4d = Zero();
|
|
ExtractSlice(buf1_4d, GL, (ss-1), 0);
|
|
buf2_4d = Zero();
|
|
for(int mu=0;mu<Nd;mu++) {
|
|
LatticeCoordinate(kmu,mu);
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
kmu = TwoPiL * kmu + TwoPiL * one * twist[mu];//twisted boundary
|
|
buf2_4d = buf2_4d + sin(kmu)*ci*(Gamma(Gmu[mu])*buf1_4d);
|
|
}
|
|
bufL_4d = buf2_4d - W * buf1_4d;
|
|
|
|
//(i*gamma_mu*sin(p_mu) - W)*(GR*P+ source)
|
|
buf1_4d = Zero();
|
|
ExtractSlice(buf1_4d, GR, (ss-1), 0);
|
|
buf2_4d = Zero();
|
|
for(int mu=0;mu<Nd;mu++) {
|
|
LatticeCoordinate(kmu,mu);
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
kmu = TwoPiL * kmu + TwoPiL * one * twist[mu];//twisted boundary
|
|
buf2_4d = buf2_4d + sin(kmu)*ci*(Gamma(Gmu[mu])*buf1_4d);
|
|
}
|
|
bufR_4d = buf2_4d - W * buf1_4d;
|
|
|
|
//(delta(s-1,u) - m*delta(s,1)*delta(u,Ls))*GL
|
|
if(ss==1){
|
|
ExtractSlice(buf1_4d, GL, (Ls-1), 0);
|
|
bufL_4d = bufL_4d - mass*buf1_4d;
|
|
}
|
|
else {
|
|
ExtractSlice(buf1_4d, GL, (ss-2), 0);
|
|
bufL_4d = bufL_4d + buf1_4d;
|
|
}
|
|
|
|
//(delta(s+1,u) - m*delta(s,Ls)*delta(u,1))*GR
|
|
if(ss==Ls){
|
|
ExtractSlice(buf1_4d, GR, 0, 0);
|
|
bufR_4d = bufR_4d - mass*buf1_4d;
|
|
}
|
|
else {
|
|
ExtractSlice(buf1_4d, GR, ss, 0);
|
|
bufR_4d = bufR_4d + buf1_4d;
|
|
}
|
|
buf1_4d = bufL_4d + bufR_4d;
|
|
InsertSlice(buf1_4d, out, (ss-1), 0);
|
|
}
|
|
|
|
|
|
out = out * (-1.0);
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const FermionField &in, RealD mass,std::vector<double> twist)
|
|
{
|
|
// what type LatticeComplex
|
|
GridBase *_grid = _FourDimGrid;
|
|
conformable(_grid,out.Grid());
|
|
|
|
typedef typename FermionField::vector_type vector_type;
|
|
typedef typename FermionField::scalar_type ScalComplex;
|
|
typedef iSinglet<ScalComplex> Tcomplex;
|
|
typedef Lattice<iSinglet<vector_type> > LatComplex;
|
|
|
|
Gamma::Algebra Gmu [] = {
|
|
Gamma::Algebra::GammaX,
|
|
Gamma::Algebra::GammaY,
|
|
Gamma::Algebra::GammaZ,
|
|
Gamma::Algebra::GammaT
|
|
};
|
|
|
|
Coordinate latt_size = _grid->_fdimensions;
|
|
|
|
|
|
FermionField num (_grid); num = Zero();
|
|
|
|
LatComplex sk(_grid); sk = Zero();
|
|
LatComplex sk2(_grid); sk2= Zero();
|
|
LatComplex W(_grid); W= Zero();
|
|
LatComplex a(_grid); a= Zero();
|
|
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
|
|
LatComplex denom(_grid); denom= Zero();
|
|
LatComplex cosha(_grid);
|
|
LatComplex kmu(_grid);
|
|
LatComplex Wea(_grid);
|
|
LatComplex Wema(_grid);
|
|
|
|
ScalComplex ci(0.0,1.0);
|
|
|
|
for(int mu=0;mu<Nd;mu++) {
|
|
|
|
LatticeCoordinate(kmu,mu);
|
|
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
|
|
kmu = TwoPiL * kmu;
|
|
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
|
|
|
|
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
|
|
sk = sk + sin(kmu) *sin(kmu);
|
|
|
|
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in);
|
|
|
|
}
|
|
|
|
W = one - M5 + sk2;
|
|
|
|
////////////////////////////////////////////
|
|
// Cosh alpha -> exp(+/- alpha)
|
|
////////////////////////////////////////////
|
|
cosha = (one + W*W + sk) / (abs(W)*2.0);
|
|
|
|
Wea = abs(W)*(cosha + sqrt(cosha*cosha-one));
|
|
Wema= abs(W)*(cosha - sqrt(cosha*cosha-one));
|
|
|
|
num = num + ( one - Wema ) * mass * in;
|
|
denom= ( Wea - one ) + mass*mass * (one - Wema);
|
|
out = num/denom;
|
|
}
|
|
|
|
template<class Impl>
|
|
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist)
|
|
{
|
|
Gamma::Algebra Gmu [] = {
|
|
Gamma::Algebra::GammaX,
|
|
Gamma::Algebra::GammaY,
|
|
Gamma::Algebra::GammaZ,
|
|
Gamma::Algebra::GammaT
|
|
};
|
|
|
|
GridBase *_grid = _FourDimGrid;
|
|
conformable(_grid,out.Grid());
|
|
|
|
typedef typename FermionField::vector_type vector_type;
|
|
typedef typename FermionField::scalar_type ScalComplex;
|
|
|
|
typedef Lattice<iSinglet<vector_type> > LatComplex;
|
|
|
|
|
|
Coordinate latt_size = _grid->_fdimensions;
|
|
|
|
LatComplex sk(_grid); sk = Zero();
|
|
LatComplex sk2(_grid); sk2= Zero();
|
|
|
|
LatComplex w_k(_grid); w_k= Zero();
|
|
LatComplex b_k(_grid); b_k= Zero();
|
|
|
|
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
|
|
|
|
FermionField num (_grid); num = Zero();
|
|
LatComplex denom(_grid); denom= Zero();
|
|
LatComplex kmu(_grid);
|
|
ScalComplex ci(0.0,1.0);
|
|
|
|
for(int mu=0;mu<Nd;mu++) {
|
|
|
|
LatticeCoordinate(kmu,mu);
|
|
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
|
|
kmu = TwoPiL * kmu;
|
|
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
|
|
|
|
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
|
|
sk = sk + sin(kmu)*sin(kmu);
|
|
|
|
num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in);
|
|
|
|
}
|
|
num = num + mass * in ;
|
|
|
|
b_k = sk2 - M5;
|
|
|
|
w_k = sqrt(sk + b_k*b_k);
|
|
|
|
denom= ( w_k + b_k + mass*mass) ;
|
|
|
|
denom= one/denom;
|
|
out = num*denom;
|
|
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Conserved current utilities for Wilson fermions, for contracting propagators
|
|
* to make a conserved current sink or inserting the conserved current
|
|
* sequentially.
|
|
|
|
// Helper macro to reverse Simd vector. Fixme: slow, generic implementation.
|
|
#define REVERSE_LS(qSite, qSiteRev, Nsimd) \
|
|
{ \
|
|
ExtractBuffer<typename SitePropagator::scalar_object> qSiteVec(Nsimd); \
|
|
extract(qSite, qSiteVec); \
|
|
for (int i = 0; i < Nsimd / 2; ++i) \
|
|
{ \
|
|
typename SitePropagator::scalar_object tmp = qSiteVec[i]; \
|
|
qSiteVec[i] = qSiteVec[Nsimd - i - 1]; \
|
|
qSiteVec[Nsimd - i - 1] = tmp; \
|
|
} \
|
|
merge(qSiteRev, qSiteVec); \
|
|
}
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
|
|
NAMESPACE_END(Grid);
|
|
|
|
|
|
|
|
|