1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/lib/qcd/action/pseudofermion/TwoFlavourEvenOdd.h
Peter Boyle 1b3c93e22a Rework/global edit to enforce type templating of fermion operators.
Allows multi-precision work and paves the way for alternate BC's and such like
allowing for example G-parity which is important for K pipi programme.
In particular, can drive an extra flavour index into the fermion fields
using template types.
2015-08-10 20:47:44 +01:00

235 lines
7.1 KiB
C++

#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
namespace Grid{
namespace QCD{
template<class Impl>
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableOperator (Matrix &Mat) : SchurDiagMooeeOperator<Matrix,FermionField>(Mat) {};
void MpcDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
GridBase *fgrid = this->_Mat.FermionGrid();
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
GridBase *ugrid = this->_Mat.GaugeGrid();
GridBase *ucbgrid = this->_Mat.GaugeRedBlackGrid();
Real coeff = 1.0;
FermionField tmp1(fcbgrid);
FermionField tmp2(fcbgrid);
conformable(fcbgrid,U._grid);
conformable(fcbgrid,V._grid);
// Assert the checkerboard?? or code for either
assert(U.checkerboard==Odd);
assert(V.checkerboard==V.checkerboard);
GaugeField ForceO(ucbgrid);
GaugeField ForceE(ucbgrid);
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
this->_Mat.Meooe (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerNo);
// Accumulate X^dag M_oe MeeInv Der_eo Y
this->_Mat.MeooeDag (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerNo);
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
Force=-Force;
}
void MpcDagDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
GridBase *fgrid = this->_Mat.FermionGrid();
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
GridBase *ugrid = this->_Mat.GaugeGrid();
GridBase *ucbgrid = this->_Mat.GaugeRedBlackGrid();
Real coeff = 1.0;
FermionField tmp1(fcbgrid);
FermionField tmp2(fcbgrid);
conformable(fcbgrid,U._grid);
conformable(fcbgrid,V._grid);
// Assert the checkerboard?? or code for either
assert(V.checkerboard==Odd);
assert(V.checkerboard==V.checkerboard);
GaugeField ForceO(ucbgrid);
GaugeField ForceE(ucbgrid);
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
this->_Mat.MeooeDag (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerYes);
// Accumulate X^dag M_oe MeeInv Der_eo Y
this->_Mat.Meooe (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerYes);
setCheckerboard(Force,ForceE);
setCheckerboard(Force,ForceO);
Force=-Force;
}
};
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any EO prec dop
////////////////////////////////////////////////////////////////////////
template<class Impl>
class TwoFlavourEvenOddPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
private:
FermionOperator<Impl> & FermOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) :
FermOp(Op),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid())
{};
//////////////////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
//////////////////////////////////////////////////////////////////////////////////////
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
// Phi = McpDag eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
RealD scale = std::sqrt(0.5);
FermionField eta (FermOp.FermionGrid());
FermionField etaOdd (FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
SchurDifferentiableOperator<Impl> PCop(FermOp);
FermOp.ImportGauge(U);
PCop.MpcDag(etaOdd,PhiOdd);
FermOp.MooeeDag(etaEven,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi (odd)
// + phi^dag (Mdag M)^-1 phi (even)
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
ActionSolver(PCop,PhiOdd,X);
PCop.Op(X,Y);
RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this.
FermOp.MooeeInvDag(PhiEven,Y);
action = action + norm2(Y);
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
//
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
DerivativeSolver(PCop,PhiOdd,X);
PCop.Op(X,Y);
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
PCop.MpcDeriv(tmp , Y, X ); dSdU=tmp;
PCop.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
// Deriv defaults to zero.
FermOp.MooeeInvDag(PhiOdd,Y);
FermOp.MooeeInv(Y,X);
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
dSdU = Ta(dSdU);
};
};
}
}
#endif