mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
1b3c93e22a
Allows multi-precision work and paves the way for alternate BC's and such like allowing for example G-parity which is important for K pipi programme. In particular, can drive an extra flavour index into the fermion fields using template types.
235 lines
7.1 KiB
C++
235 lines
7.1 KiB
C++
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
|
|
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
|
|
|
|
namespace Grid{
|
|
namespace QCD{
|
|
|
|
template<class Impl>
|
|
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<FermionOperator<Impl>,typename Impl::FermionField>
|
|
{
|
|
public:
|
|
#include <qcd/action/fermion/FermionImplTypedefs.h>
|
|
|
|
public:
|
|
typedef FermionOperator<Impl> Matrix;
|
|
|
|
SchurDifferentiableOperator (Matrix &Mat) : SchurDiagMooeeOperator<Matrix,FermionField>(Mat) {};
|
|
|
|
void MpcDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
|
|
|
|
GridBase *fgrid = this->_Mat.FermionGrid();
|
|
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
|
|
GridBase *ugrid = this->_Mat.GaugeGrid();
|
|
GridBase *ucbgrid = this->_Mat.GaugeRedBlackGrid();
|
|
|
|
Real coeff = 1.0;
|
|
FermionField tmp1(fcbgrid);
|
|
FermionField tmp2(fcbgrid);
|
|
|
|
conformable(fcbgrid,U._grid);
|
|
conformable(fcbgrid,V._grid);
|
|
|
|
// Assert the checkerboard?? or code for either
|
|
assert(U.checkerboard==Odd);
|
|
assert(V.checkerboard==V.checkerboard);
|
|
|
|
GaugeField ForceO(ucbgrid);
|
|
GaugeField ForceE(ucbgrid);
|
|
|
|
// X^dag Der_oe MeeInv Meo Y
|
|
// Use Mooee as nontrivial but gauge field indept
|
|
this->_Mat.Meooe (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
|
|
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
|
|
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerNo);
|
|
|
|
// Accumulate X^dag M_oe MeeInv Der_eo Y
|
|
this->_Mat.MeooeDag (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
|
|
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
|
|
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerNo);
|
|
|
|
setCheckerboard(Force,ForceE);
|
|
setCheckerboard(Force,ForceO);
|
|
Force=-Force;
|
|
}
|
|
|
|
|
|
void MpcDagDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
|
|
|
|
GridBase *fgrid = this->_Mat.FermionGrid();
|
|
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
|
|
GridBase *ugrid = this->_Mat.GaugeGrid();
|
|
GridBase *ucbgrid = this->_Mat.GaugeRedBlackGrid();
|
|
|
|
Real coeff = 1.0;
|
|
FermionField tmp1(fcbgrid);
|
|
FermionField tmp2(fcbgrid);
|
|
|
|
conformable(fcbgrid,U._grid);
|
|
conformable(fcbgrid,V._grid);
|
|
|
|
// Assert the checkerboard?? or code for either
|
|
assert(V.checkerboard==Odd);
|
|
assert(V.checkerboard==V.checkerboard);
|
|
|
|
GaugeField ForceO(ucbgrid);
|
|
GaugeField ForceE(ucbgrid);
|
|
|
|
// X^dag Der_oe MeeInv Meo Y
|
|
// Use Mooee as nontrivial but gauge field indept
|
|
this->_Mat.MeooeDag (V,tmp1); // odd->even -- implicit -0.5 factor to be applied
|
|
this->_Mat.MooeeInvDag(tmp1,tmp2); // even->even
|
|
this->_Mat.MoeDeriv(ForceO,U,tmp2,DaggerYes);
|
|
|
|
// Accumulate X^dag M_oe MeeInv Der_eo Y
|
|
this->_Mat.Meooe (U,tmp1); // even->odd -- implicit -0.5 factor to be applied
|
|
this->_Mat.MooeeInv(tmp1,tmp2); // even->even
|
|
this->_Mat.MeoDeriv(ForceE,tmp2,V,DaggerYes);
|
|
|
|
setCheckerboard(Force,ForceE);
|
|
setCheckerboard(Force,ForceO);
|
|
Force=-Force;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Two flavour pseudofermion action for any EO prec dop
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<class Impl>
|
|
class TwoFlavourEvenOddPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
|
|
|
public:
|
|
#include <qcd/action/fermion/FermionImplTypedefs.h>
|
|
|
|
private:
|
|
|
|
FermionOperator<Impl> & FermOp;// the basic operator
|
|
|
|
OperatorFunction<FermionField> &DerivativeSolver;
|
|
|
|
OperatorFunction<FermionField> &ActionSolver;
|
|
|
|
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
|
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
|
|
|
public:
|
|
/////////////////////////////////////////////////
|
|
// Pass in required objects.
|
|
/////////////////////////////////////////////////
|
|
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
|
|
OperatorFunction<FermionField> & DS,
|
|
OperatorFunction<FermionField> & AS
|
|
) :
|
|
FermOp(Op),
|
|
DerivativeSolver(DS),
|
|
ActionSolver(AS),
|
|
PhiEven(Op.FermionRedBlackGrid()),
|
|
PhiOdd(Op.FermionRedBlackGrid())
|
|
{};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
|
|
|
|
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
|
|
// Phi = McpDag eta
|
|
// P(eta) = e^{- eta^dag eta}
|
|
//
|
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
|
RealD scale = std::sqrt(0.5);
|
|
|
|
FermionField eta (FermOp.FermionGrid());
|
|
FermionField etaOdd (FermOp.FermionRedBlackGrid());
|
|
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
|
|
|
gaussian(pRNG,eta);
|
|
pickCheckerboard(Even,etaEven,eta);
|
|
pickCheckerboard(Odd,etaOdd,eta);
|
|
|
|
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
PCop.MpcDag(etaOdd,PhiOdd);
|
|
FermOp.MooeeDag(etaEven,PhiEven);
|
|
|
|
PhiOdd =PhiOdd*scale;
|
|
PhiEven=PhiEven*scale;
|
|
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
// S = phi^dag (Mdag M)^-1 phi (odd)
|
|
// + phi^dag (Mdag M)^-1 phi (even)
|
|
//////////////////////////////////////////////////////
|
|
virtual RealD S(const GaugeField &U) {
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
FermionField X(FermOp.FermionRedBlackGrid());
|
|
FermionField Y(FermOp.FermionRedBlackGrid());
|
|
|
|
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
|
|
|
X=zero;
|
|
ActionSolver(PCop,PhiOdd,X);
|
|
PCop.Op(X,Y);
|
|
RealD action = norm2(Y);
|
|
|
|
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
|
|
// Only really clover term that creates this.
|
|
FermOp.MooeeInvDag(PhiEven,Y);
|
|
action = action + norm2(Y);
|
|
|
|
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
|
|
return action;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
//
|
|
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
|
|
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
|
|
//
|
|
// = - Ydag dM X - Xdag dMdag Y
|
|
//
|
|
//////////////////////////////////////////////////////
|
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
FermionField X(FermOp.FermionRedBlackGrid());
|
|
FermionField Y(FermOp.FermionRedBlackGrid());
|
|
GaugeField tmp(FermOp.GaugeGrid());
|
|
|
|
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
|
|
|
X=zero;
|
|
DerivativeSolver(PCop,PhiOdd,X);
|
|
PCop.Op(X,Y);
|
|
|
|
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
|
|
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
|
|
|
|
PCop.MpcDeriv(tmp , Y, X ); dSdU=tmp;
|
|
PCop.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
|
|
|
|
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
|
|
// Deriv defaults to zero.
|
|
FermOp.MooeeInvDag(PhiOdd,Y);
|
|
FermOp.MooeeInv(Y,X);
|
|
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
|
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
|
|
|
dSdU = Ta(dSdU);
|
|
|
|
};
|
|
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|