1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/Hadrons/Modules/MContraction/Nucleon.hpp

215 lines
8.1 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Nucleon.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Felix Erben <felix.erben@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_Nucleon_hpp_
#define Hadrons_MContraction_Nucleon_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Nucleon *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class NucleonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(NucleonPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, output);
};
template <typename FImpl1, typename FImpl2, typename FImpl3>
class TNucleon: public Module<NucleonPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<Complex>, corr);
};
public:
// constructor
TNucleon(const std::string name);
// destructor
virtual ~TNucleon(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Nucleon, ARG(TNucleon<FIMPL, FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TNucleon implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
TNucleon<FImpl1, FImpl2, FImpl3>::TNucleon(const std::string name)
: Module<NucleonPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TNucleon<FImpl1, FImpl2, FImpl3>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2, par().q3};
return input;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TNucleon<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TNucleon<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
envTmpLat(LatticeComplex, "diquark");
}
#ifdef DEBUG
template <typename T> struct DebugShowType { DebugShowType() { T t = (void***) nullptr; } };
#define DEBUG_SHOW_TYPE(x) DebugShowType<decltype(x)> __DEBUG_SHOW_TYPE__##x
#endif
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TNucleon<FImpl1, FImpl2, FImpl3>::execute(void)
{
LOG(Message) << "Computing nucleon contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl;
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q2);
envGetTmp(LatticeComplex, c);
envGetTmp(LatticeComplex, diquark);
Result result;
int nt = env().getDim(Tp);
result.corr.resize(nt);
std::vector<TComplex> buf;
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
Gamma Cg5(Gamma::Algebra::SigmaXZ);
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
// This is the \delta_{123}^{123} part
for (int ie_src=0; ie_src < 6 ; ie_src++){
int c1_src = epsilon[ie_src][0]; //a
int c2_src = epsilon[ie_src][1]; //b
int c3_src = epsilon[ie_src][2]; //c
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
int c1_snk = epsilon[ie_snk][0]; //a'
int c2_snk = epsilon[ie_snk][1]; //b'
int c3_snk = epsilon[ie_snk][2]; //c'
auto Dcc = peekColour(q1,c1_snk,c1_src); //D_{gamma' gamma}
auto Daa = peekColour(q2,c2_snk,c2_src); //D_{alpha' alpha}
// DEBUG Just defining a few types so I can see what these things are
//auto Daa_debug1 = transposeSpin( q1 );
// Current compilation settings tell me that FImpl is WilsonImplR (see FermionOperatorImpl.h, line 163)
const WilsonImplR::PropagatorField &Debug_q_1{ q1 };
//DEBUG_SHOW_TYPE( q1 );
// The propagator field is an alias for
const Lattice<iScalar<iMatrix<iMatrix<vComplexD, Nc>, Ns> >> &Debug_q_2{ q1 };
// So then Daa is one of these
const Lattice<iScalar<iMatrix<iScalar<vComplexD>, Ns> >> &Debug_Daa_1{ Daa };
// Which means I should be able to do this
//Lattice<iScalar<iMatrix<iScalar<vComplexD>, Ns> >> Debug_Daa_2 = transposeSpin(Daa);
// END DEBUG
//auto test = transposeSpin(Daa); //Does not work...
auto Dbb = peekColour(q3,c3_snk,c3_src); //D_{beta' beta}
diquark = trace(Cg5 * Daa * Cg5 * Dbb); //Daa transposed????
//diquark = q2()()(c2,1) * Cg5 * q3()()(c3,2); //Why does this not work??
auto temp = Dcc * diquark;
auto g4_temp = g4 * temp;
int parity = 1;
c += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * (double)parity * trace(temp + g4_temp);
}
}
// This is the \delta_{123}^{213} part
for (int ie_src=0; ie_src < 6 ; ie_src++){
int c1_src = epsilon[ie_src][0]; //a
int c2_src = epsilon[ie_src][1]; //b
int c3_src = epsilon[ie_src][2]; //c
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
int c1_snk = epsilon[ie_snk][0]; //a'
int c2_snk = epsilon[ie_snk][1]; //b'
int c3_snk = epsilon[ie_snk][2]; //c'
auto Dca = peekColour(q1,c1_snk,c2_src); //D_{gamma' alpha}
auto Dac = peekColour(q2,c2_snk,c1_src); //D_{alpha' gamma}
auto Dbb = peekColour(q3,c3_snk,c3_src); //D_{beta' beta}
auto temp = Dca * Cg5 * Dbb * Cg5 * Dac; //(Dbb*Cg5) transposed???
auto g4_temp = g4 * temp;
int parity = 1;
c -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * 0.5 * (double)parity * trace(temp + g4_temp);
}
}
sliceSum(c,buf,Tp);
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[t] = TensorRemove(buf[t]);
}
saveResult(par().output, "baryon", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_Nucleon_hpp_