mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 01:35:36 +00:00
288 lines
12 KiB
C++
288 lines
12 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/cartesian/Cartesian_base.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_CARTESIAN_BASE_H
|
|
#define GRID_CARTESIAN_BASE_H
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Commicator provides information on the processor grid
|
|
//////////////////////////////////////////////////////////////////////
|
|
// unsigned long _ndimension;
|
|
// std::vector<int> _processors; // processor grid
|
|
// int _processor; // linear processor rank
|
|
// std::vector<int> _processor_coor; // linear processor rank
|
|
//////////////////////////////////////////////////////////////////////
|
|
class GridBase : public CartesianCommunicator , public GridThread {
|
|
|
|
public:
|
|
int dummy;
|
|
// Give Lattice access
|
|
template<class object> friend class Lattice;
|
|
|
|
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
|
|
GridBase(const std::vector<int> & processor_grid,
|
|
const CartesianCommunicator &parent,
|
|
int &split_rank)
|
|
: CartesianCommunicator(processor_grid,parent,split_rank) {};
|
|
GridBase(const std::vector<int> & processor_grid,
|
|
const CartesianCommunicator &parent)
|
|
: CartesianCommunicator(processor_grid,parent,dummy) {};
|
|
|
|
virtual ~GridBase() = default;
|
|
|
|
// Physics Grid information.
|
|
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
|
|
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
|
|
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
|
|
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
|
|
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
|
|
std::vector<int> _ostride; // Outer stride for each dimension
|
|
std::vector<int> _istride; // Inner stride i.e. within simd lane
|
|
int _osites; // _isites*_osites = product(dimensions).
|
|
int _isites;
|
|
int _fsites; // _isites*_osites = product(dimensions).
|
|
int _gsites;
|
|
std::vector<int> _slice_block;// subslice information
|
|
std::vector<int> _slice_stride;
|
|
std::vector<int> _slice_nblock;
|
|
|
|
std::vector<int> _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
|
|
std::vector<int> _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
|
|
|
|
public:
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Checkerboarding interface is virtual and overridden by
|
|
// GridCartesian / GridRedBlackCartesian
|
|
////////////////////////////////////////////////////////////////
|
|
virtual int CheckerBoarded(int dim)=0;
|
|
virtual int CheckerBoard(const std::vector<int> &site)=0;
|
|
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
|
|
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
|
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
|
|
virtual int CheckerBoardFromOindex (int Oindex)=0;
|
|
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Local layout calculations
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
// These routines are key. Subdivide the linearised cartesian index into
|
|
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
|
|
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
|
|
//
|
|
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
|
|
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
|
|
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
|
|
// lanes are operated upon simultaneously.
|
|
|
|
virtual int oIndex(std::vector<int> &coor)
|
|
{
|
|
int idx=0;
|
|
// Works with either global or local coordinates
|
|
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
|
|
return idx;
|
|
}
|
|
virtual int iIndex(std::vector<int> &lcoor)
|
|
{
|
|
int idx=0;
|
|
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
|
|
return idx;
|
|
}
|
|
inline int oIndexReduced(std::vector<int> &ocoor)
|
|
{
|
|
int idx=0;
|
|
// ocoor is already reduced so can eliminate the modulo operation
|
|
// for fast indexing and inline the routine
|
|
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
|
|
return idx;
|
|
}
|
|
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
|
|
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
|
|
}
|
|
|
|
inline void InOutCoorToLocalCoor (std::vector<int> &ocoor, std::vector<int> &icoor, std::vector<int> &lcoor) {
|
|
lcoor.resize(_ndimension);
|
|
for (int d = 0; d < _ndimension; d++)
|
|
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////
|
|
// SIMD lane addressing
|
|
//////////////////////////////////////////////////////////
|
|
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
|
|
{
|
|
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
|
|
}
|
|
|
|
inline int PermuteDim(int dimension){
|
|
return _simd_layout[dimension]>1;
|
|
}
|
|
inline int PermuteType(int dimension){
|
|
int permute_type=0;
|
|
//
|
|
// FIXME:
|
|
//
|
|
// Best way to encode this would be to present a mask
|
|
// for which simd dimensions are rotated, and the rotation
|
|
// size. If there is only one simd dimension rotated, this is just
|
|
// a permute.
|
|
//
|
|
// Cases: PermuteType == 1,2,4,8
|
|
// Distance should be either 0,1,2..
|
|
//
|
|
if ( _simd_layout[dimension] > 2 ) {
|
|
for(int d=0;d<_ndimension;d++){
|
|
if ( d != dimension ) assert ( (_simd_layout[d]==1) );
|
|
}
|
|
permute_type = RotateBit; // How to specify distance; this is not just direction.
|
|
return permute_type;
|
|
}
|
|
|
|
for(int d=_ndimension-1;d>dimension;d--){
|
|
if (_simd_layout[d]>1 ) permute_type++;
|
|
}
|
|
return permute_type;
|
|
}
|
|
////////////////////////////////////////////////////////////////
|
|
// Array sizing queries
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
inline int iSites(void) const { return _isites; };
|
|
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
|
inline int oSites(void) const { return _osites; };
|
|
inline int lSites(void) const { return _isites*_osites; };
|
|
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
|
inline int Nd (void) const { return _ndimension;};
|
|
|
|
inline const std::vector<int> LocalStarts(void) { return _lstart; };
|
|
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
|
|
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
|
|
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
|
|
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Utility to print the full decomposition details
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
void show_decomposition(){
|
|
std::cout << GridLogMessage << "\tFull Dimensions : " << _fdimensions << std::endl;
|
|
std::cout << GridLogMessage << "\tSIMD layout : " << _simd_layout << std::endl;
|
|
std::cout << GridLogMessage << "\tGlobal Dimensions : " << _gdimensions << std::endl;
|
|
std::cout << GridLogMessage << "\tLocal Dimensions : " << _ldimensions << std::endl;
|
|
std::cout << GridLogMessage << "\tReduced Dimensions : " << _rdimensions << std::endl;
|
|
std::cout << GridLogMessage << "\tOuter strides : " << _ostride << std::endl;
|
|
std::cout << GridLogMessage << "\tInner strides : " << _istride << std::endl;
|
|
std::cout << GridLogMessage << "\tiSites : " << _isites << std::endl;
|
|
std::cout << GridLogMessage << "\toSites : " << _osites << std::endl;
|
|
std::cout << GridLogMessage << "\tlSites : " << lSites() << std::endl;
|
|
std::cout << GridLogMessage << "\tgSites : " << gSites() << std::endl;
|
|
std::cout << GridLogMessage << "\tNd : " << _ndimension << std::endl;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Global addressing
|
|
////////////////////////////////////////////////////////////////
|
|
void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){
|
|
assert(gidx< gSites());
|
|
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
|
}
|
|
void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){
|
|
assert(lidx<lSites());
|
|
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
|
}
|
|
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
|
|
gidx=0;
|
|
int mult=1;
|
|
for(int mu=0;mu<_ndimension;mu++) {
|
|
gidx+=mult*gcoor[mu];
|
|
mult*=_gdimensions[mu];
|
|
}
|
|
}
|
|
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
|
|
{
|
|
pcoor.resize(_ndimension);
|
|
lcoor.resize(_ndimension);
|
|
for(int mu=0;mu<_ndimension;mu++){
|
|
int _fld = _fdimensions[mu]/_processors[mu];
|
|
pcoor[mu] = gcoor[mu]/_fld;
|
|
lcoor[mu] = gcoor[mu]%_fld;
|
|
}
|
|
}
|
|
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
|
|
{
|
|
std::vector<int> pcoor;
|
|
std::vector<int> lcoor;
|
|
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
|
|
rank = RankFromProcessorCoor(pcoor);
|
|
/*
|
|
std::vector<int> cblcoor(lcoor);
|
|
for(int d=0;d<cblcoor.size();d++){
|
|
if( this->CheckerBoarded(d) ) {
|
|
cblcoor[d] = lcoor[d]/2;
|
|
}
|
|
}
|
|
*/
|
|
i_idx= iIndex(lcoor);
|
|
o_idx= oIndex(lcoor);
|
|
}
|
|
|
|
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
|
|
{
|
|
gcoor.resize(_ndimension);
|
|
std::vector<int> coor(_ndimension);
|
|
|
|
ProcessorCoorFromRank(rank,coor);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
|
|
|
|
iCoorFromIindex(coor,i_idx);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]*coor[mu];
|
|
|
|
oCoorFromOindex (coor,o_idx);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
|
|
|
|
}
|
|
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
|
|
{
|
|
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
|
|
if(CheckerBoarded(0)){
|
|
fcoor[0] = fcoor[0]*2+cb;
|
|
}
|
|
}
|
|
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
|
|
{
|
|
gcoor.resize(_ndimension);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
|
|
}
|
|
};
|
|
|
|
NAMESPACE_END(Grid);
|
|
#endif
|