mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
754 lines
22 KiB
C++
754 lines
22 KiB
C++
/*************************************************************************************
|
||
|
||
Grid physics library, www.github.com/paboyle/Grid
|
||
|
||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||
|
||
Copyright (C) 2015
|
||
|
||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||
Author: Christoph Lehner <clehner@bnl.gov>
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
||
See the full license in the file "LICENSE" in the top level distribution directory
|
||
*************************************************************************************/
|
||
/* END LEGAL */
|
||
#ifndef GRID_BIRL_H
|
||
#define GRID_BIRL_H
|
||
|
||
#include <string.h> //memset
|
||
|
||
#include <zlib.h>
|
||
#include <sys/stat.h>
|
||
|
||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
|
||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
|
||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
|
||
|
||
namespace Grid {
|
||
|
||
/////////////////////////////////////////////////////////////
|
||
// Implicitly restarted lanczos
|
||
/////////////////////////////////////////////////////////////
|
||
|
||
template<class Field>
|
||
class BlockImplicitlyRestartedLanczos {
|
||
|
||
const RealD small = 1.0e-16;
|
||
public:
|
||
int lock;
|
||
int get;
|
||
int Niter;
|
||
int converged;
|
||
|
||
int Nminres; // Minimum number of restarts; only check for convergence after
|
||
int Nstop; // Number of evecs checked for convergence
|
||
int Nk; // Number of converged sought
|
||
int Np; // Np -- Number of spare vecs in kryloc space
|
||
int Nm; // Nm -- total number of vectors
|
||
|
||
int orth_period;
|
||
|
||
RealD OrthoTime;
|
||
|
||
RealD eresid, betastp;
|
||
SortEigen<Field> _sort;
|
||
LinearFunction<Field> &_HermOp;
|
||
LinearFunction<Field> &_HermOpTest;
|
||
/////////////////////////
|
||
// Constructor
|
||
/////////////////////////
|
||
|
||
BlockImplicitlyRestartedLanczos(
|
||
LinearFunction<Field> & HermOp,
|
||
LinearFunction<Field> & HermOpTest,
|
||
int _Nstop, // sought vecs
|
||
int _Nk, // sought vecs
|
||
int _Nm, // spare vecs
|
||
RealD _eresid, // resid in lmdue deficit
|
||
RealD _betastp, // if beta(k) < betastp: converged
|
||
int _Niter, // Max iterations
|
||
int _Nminres, int _orth_period = 1) :
|
||
_HermOp(HermOp),
|
||
_HermOpTest(HermOpTest),
|
||
Nstop(_Nstop),
|
||
Nk(_Nk),
|
||
Nm(_Nm),
|
||
eresid(_eresid),
|
||
betastp(_betastp),
|
||
Niter(_Niter),
|
||
Nminres(_Nminres),
|
||
orth_period(_orth_period)
|
||
{
|
||
Np = Nm-Nk; assert(Np>0);
|
||
};
|
||
|
||
BlockImplicitlyRestartedLanczos(
|
||
LinearFunction<Field> & HermOp,
|
||
LinearFunction<Field> & HermOpTest,
|
||
int _Nk, // sought vecs
|
||
int _Nm, // spare vecs
|
||
RealD _eresid, // resid in lmdue deficit
|
||
RealD _betastp, // if beta(k) < betastp: converged
|
||
int _Niter, // Max iterations
|
||
int _Nminres,
|
||
int _orth_period = 1) :
|
||
_HermOp(HermOp),
|
||
_HermOpTest(HermOpTest),
|
||
Nstop(_Nk),
|
||
Nk(_Nk),
|
||
Nm(_Nm),
|
||
eresid(_eresid),
|
||
betastp(_betastp),
|
||
Niter(_Niter),
|
||
Nminres(_Nminres),
|
||
orth_period(_orth_period)
|
||
{
|
||
Np = Nm-Nk; assert(Np>0);
|
||
};
|
||
|
||
|
||
/* Saad PP. 195
|
||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||
2. For k = 1,2,...,m Do:
|
||
3. wk:=Avk−βkv_{k−1}
|
||
4. αk:=(wk,vk) //
|
||
5. wk:=wk−αkvk // wk orthog vk
|
||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||
7. vk+1 := wk/βk+1
|
||
8. EndDo
|
||
*/
|
||
void step(std::vector<RealD>& lmd,
|
||
std::vector<RealD>& lme,
|
||
BasisFieldVector<Field>& evec,
|
||
Field& w,int Nm,int k)
|
||
{
|
||
assert( k< Nm );
|
||
|
||
GridStopWatch gsw_op,gsw_o;
|
||
|
||
Field& evec_k = evec[k];
|
||
|
||
gsw_op.Start();
|
||
_HermOp(evec_k,w);
|
||
gsw_op.Stop();
|
||
|
||
if(k>0){
|
||
w -= lme[k-1] * evec[k-1];
|
||
}
|
||
|
||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||
RealD alph = real(zalph);
|
||
|
||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||
|
||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||
// 7. vk+1 := wk/βk+1
|
||
|
||
std::cout<<GridLogMessage << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||
const RealD tiny = 1.0e-20;
|
||
if ( beta < tiny ) {
|
||
std::cout<<GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||
}
|
||
lmd[k] = alph;
|
||
lme[k] = beta;
|
||
|
||
gsw_o.Start();
|
||
if (k>0 && k % orth_period == 0) {
|
||
orthogonalize(w,evec,k); // orthonormalise
|
||
}
|
||
gsw_o.Stop();
|
||
|
||
if(k < Nm-1) {
|
||
evec[k+1] = w;
|
||
}
|
||
|
||
std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() <<
|
||
" orth=" << gsw_o.Elapsed() << std::endl;
|
||
|
||
}
|
||
|
||
void qr_decomp(std::vector<RealD>& lmd,
|
||
std::vector<RealD>& lme,
|
||
int Nk,
|
||
int Nm,
|
||
std::vector<RealD>& Qt,
|
||
RealD Dsh,
|
||
int kmin,
|
||
int kmax)
|
||
{
|
||
int k = kmin-1;
|
||
RealD x;
|
||
|
||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||
RealD s = -lme[k] *Fden;
|
||
|
||
RealD tmpa1 = lmd[k];
|
||
RealD tmpa2 = lmd[k+1];
|
||
RealD tmpb = lme[k];
|
||
|
||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||
x =-s*lme[k+1];
|
||
lme[k+1] = c*lme[k+1];
|
||
|
||
for(int i=0; i<Nk; ++i){
|
||
RealD Qtmp1 = Qt[i+Nm*k ];
|
||
RealD Qtmp2 = Qt[i+Nm*(k+1)];
|
||
Qt[i+Nm*k ] = c*Qtmp1 - s*Qtmp2;
|
||
Qt[i+Nm*(k+1)] = s*Qtmp1 + c*Qtmp2;
|
||
}
|
||
|
||
// Givens transformations
|
||
for(int k = kmin; k < kmax-1; ++k){
|
||
|
||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||
RealD c = lme[k-1]*Fden;
|
||
RealD s = - x*Fden;
|
||
|
||
RealD tmpa1 = lmd[k];
|
||
RealD tmpa2 = lmd[k+1];
|
||
RealD tmpb = lme[k];
|
||
|
||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||
lme[k-1] = c*lme[k-1] -s*x;
|
||
|
||
if(k != kmax-2){
|
||
x = -s*lme[k+1];
|
||
lme[k+1] = c*lme[k+1];
|
||
}
|
||
|
||
for(int i=0; i<Nk; ++i){
|
||
RealD Qtmp1 = Qt[i+Nm*k ];
|
||
RealD Qtmp2 = Qt[i+Nm*(k+1)];
|
||
Qt[i+Nm*k ] = c*Qtmp1 -s*Qtmp2;
|
||
Qt[i+Nm*(k+1)] = s*Qtmp1 +c*Qtmp2;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef USE_LAPACK_IRL
|
||
#define LAPACK_INT int
|
||
//long long
|
||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||
std::vector<RealD>& lme,
|
||
int N1,
|
||
int N2,
|
||
std::vector<RealD>& Qt,
|
||
GridBase *grid){
|
||
|
||
std::cout << GridLogMessage << "diagonalize_lapack start\n";
|
||
GridStopWatch gsw;
|
||
|
||
const int size = Nm;
|
||
// tevals.resize(size);
|
||
// tevecs.resize(size);
|
||
LAPACK_INT NN = N1;
|
||
std::vector<double> evals_tmp(NN);
|
||
std::vector<double> evec_tmp(NN*NN);
|
||
memset(&evec_tmp[0],0,sizeof(double)*NN*NN);
|
||
// double AA[NN][NN];
|
||
std::vector<double> DD(NN);
|
||
std::vector<double> EE(NN);
|
||
for (int i = 0; i< NN; i++)
|
||
for (int j = i - 1; j <= i + 1; j++)
|
||
if ( j < NN && j >= 0 ) {
|
||
if (i==j) DD[i] = lmd[i];
|
||
if (i==j) evals_tmp[i] = lmd[i];
|
||
if (j==(i-1)) EE[j] = lme[j];
|
||
}
|
||
LAPACK_INT evals_found;
|
||
LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||
LAPACK_INT liwork = 3+NN*10 ;
|
||
std::vector<LAPACK_INT> iwork(liwork);
|
||
std::vector<double> work(lwork);
|
||
std::vector<LAPACK_INT> isuppz(2*NN);
|
||
char jobz = 'V'; // calculate evals & evecs
|
||
char range = 'I'; // calculate all evals
|
||
// char range = 'A'; // calculate all evals
|
||
char uplo = 'U'; // refer to upper half of original matrix
|
||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||
std::vector<int> ifail(NN);
|
||
LAPACK_INT info;
|
||
// int total = QMP_get_number_of_nodes();
|
||
// int node = QMP_get_node_number();
|
||
// GridBase *grid = evec[0]._grid;
|
||
int total = grid->_Nprocessors;
|
||
int node = grid->_processor;
|
||
int interval = (NN/total)+1;
|
||
double vl = 0.0, vu = 0.0;
|
||
LAPACK_INT il = interval*node+1 , iu = interval*(node+1);
|
||
if (iu > NN) iu=NN;
|
||
double tol = 0.0;
|
||
if (1) {
|
||
memset(&evals_tmp[0],0,sizeof(double)*NN);
|
||
if ( il <= NN){
|
||
std::cout << GridLogMessage << "dstegr started" << std::endl;
|
||
gsw.Start();
|
||
dstegr(&jobz, &range, &NN,
|
||
(double*)&DD[0], (double*)&EE[0],
|
||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||
&tol, // tolerance
|
||
&evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN,
|
||
&isuppz[0],
|
||
&work[0], &lwork, &iwork[0], &liwork,
|
||
&info);
|
||
gsw.Stop();
|
||
std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl;
|
||
for (int i = iu-1; i>= il-1; i--){
|
||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||
for (int j = 0; j< NN; j++){
|
||
evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j];
|
||
if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.;
|
||
}
|
||
}
|
||
}
|
||
{
|
||
// QMP_sum_double_array(evals_tmp,NN);
|
||
// QMP_sum_double_array((double *)evec_tmp,NN*NN);
|
||
grid->GlobalSumVector(&evals_tmp[0],NN);
|
||
grid->GlobalSumVector(&evec_tmp[0],NN*NN);
|
||
}
|
||
}
|
||
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
|
||
for(int i=0;i<NN;i++){
|
||
for(int j=0;j<NN;j++)
|
||
Qt[(NN-1-i)*N2+j]=evec_tmp[i*NN + j];
|
||
lmd [NN-1-i]=evals_tmp[i];
|
||
}
|
||
|
||
std::cout << GridLogMessage << "diagonalize_lapack complete\n";
|
||
}
|
||
#undef LAPACK_INT
|
||
#endif
|
||
|
||
|
||
void diagonalize(std::vector<RealD>& lmd,
|
||
std::vector<RealD>& lme,
|
||
int N2,
|
||
int N1,
|
||
std::vector<RealD>& Qt,
|
||
GridBase *grid)
|
||
{
|
||
|
||
#ifdef USE_LAPACK_IRL
|
||
const int check_lapack=0; // just use lapack if 0, check against lapack if 1
|
||
|
||
if(!check_lapack)
|
||
return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
|
||
|
||
std::vector <RealD> lmd2(N1);
|
||
std::vector <RealD> lme2(N1);
|
||
std::vector<RealD> Qt2(N1*N1);
|
||
for(int k=0; k<N1; ++k){
|
||
lmd2[k] = lmd[k];
|
||
lme2[k] = lme[k];
|
||
}
|
||
for(int k=0; k<N1*N1; ++k)
|
||
Qt2[k] = Qt[k];
|
||
|
||
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
|
||
#endif
|
||
|
||
int Niter = 10000*N1;
|
||
int kmin = 1;
|
||
int kmax = N2;
|
||
// (this should be more sophisticated)
|
||
|
||
for(int iter=0; ; ++iter){
|
||
if ( (iter+1)%(100*N1)==0)
|
||
std::cout<<GridLogMessage << "[QL method] Not converged - iteration "<<iter+1<<"\n";
|
||
|
||
// determination of 2x2 leading submatrix
|
||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||
// (Dsh: shift)
|
||
|
||
// transformation
|
||
qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
|
||
|
||
// Convergence criterion (redef of kmin and kamx)
|
||
for(int j=kmax-1; j>= kmin; --j){
|
||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||
if(fabs(lme[j-1])+dds > dds){
|
||
kmax = j+1;
|
||
goto continued;
|
||
}
|
||
}
|
||
Niter = iter;
|
||
#ifdef USE_LAPACK_IRL
|
||
if(check_lapack){
|
||
const double SMALL=1e-8;
|
||
diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
|
||
std::vector <RealD> lmd3(N2);
|
||
for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
|
||
_sort.push(lmd3,N2);
|
||
_sort.push(lmd2,N2);
|
||
for(int k=0; k<N2; ++k){
|
||
if (fabs(lmd2[k] - lmd3[k]) >SMALL) std::cout<<GridLogMessage <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
|
||
// if (fabs(lme2[k] - lme[k]) >SMALL) std::cout<<GridLogMessage <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
|
||
}
|
||
for(int k=0; k<N1*N1; ++k){
|
||
// if (fabs(Qt2[k] - Qt[k]) >SMALL) std::cout<<GridLogMessage <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
|
||
}
|
||
}
|
||
#endif
|
||
return;
|
||
|
||
continued:
|
||
for(int j=0; j<kmax-1; ++j){
|
||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||
if(fabs(lme[j])+dds > dds){
|
||
kmin = j+1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
std::cout<<GridLogMessage << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||
abort();
|
||
}
|
||
|
||
#if 1
|
||
template<typename T>
|
||
static RealD normalise(T& v)
|
||
{
|
||
RealD nn = norm2(v);
|
||
nn = sqrt(nn);
|
||
v = v * (1.0/nn);
|
||
return nn;
|
||
}
|
||
|
||
void orthogonalize(Field& w,
|
||
BasisFieldVector<Field>& evec,
|
||
int k)
|
||
{
|
||
double t0=-usecond()/1e6;
|
||
|
||
evec.orthogonalize(w,k);
|
||
|
||
normalise(w);
|
||
t0+=usecond()/1e6;
|
||
OrthoTime +=t0;
|
||
}
|
||
|
||
void setUnit_Qt(int Nm, std::vector<RealD> &Qt) {
|
||
for(int i=0; i<Qt.size(); ++i) Qt[i] = 0.0;
|
||
for(int k=0; k<Nm; ++k) Qt[k + k*Nm] = 1.0;
|
||
}
|
||
|
||
/* Rudy Arthur's thesis pp.137
|
||
------------------------
|
||
Require: M > K P = M − K †
|
||
Compute the factorization AVM = VM HM + fM eM
|
||
repeat
|
||
Q=I
|
||
for i = 1,...,P do
|
||
QiRi =HM −θiI Q = QQi
|
||
H M = Q †i H M Q i
|
||
end for
|
||
βK =HM(K+1,K) σK =Q(M,K)
|
||
r=vK+1βK +rσK
|
||
VK =VM(1:M)Q(1:M,1:K)
|
||
HK =HM(1:K,1:K)
|
||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||
until convergence
|
||
*/
|
||
|
||
void calc(std::vector<RealD>& eval,
|
||
BasisFieldVector<Field>& evec,
|
||
const Field& src,
|
||
int& Nconv,
|
||
bool reverse,
|
||
int SkipTest)
|
||
{
|
||
|
||
GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid;
|
||
assert(grid == src._grid);
|
||
|
||
std::cout<<GridLogMessage << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
|
||
std::cout<<GridLogMessage << " -- Nm = " << Nm << std::endl;
|
||
std::cout<<GridLogMessage << " -- size of eval = " << eval.size() << std::endl;
|
||
std::cout<<GridLogMessage << " -- size of evec = " << evec.size() << std::endl;
|
||
|
||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||
|
||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||
RealD evalMaxApprox = 0.0;
|
||
{
|
||
auto src_n = src;
|
||
auto tmp = src;
|
||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||
_HermOpTest(src_n,tmp);
|
||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||
RealD vden = norm2(src_n);
|
||
RealD na = vnum/vden;
|
||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||
i=_MAX_ITER_IRL_MEVAPP_;
|
||
evalMaxApprox = na;
|
||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||
src_n = tmp;
|
||
}
|
||
}
|
||
|
||
std::vector<RealD> lme(Nm);
|
||
std::vector<RealD> lme2(Nm);
|
||
std::vector<RealD> eval2(Nm);
|
||
std::vector<RealD> eval2_copy(Nm);
|
||
std::vector<RealD> Qt(Nm*Nm);
|
||
|
||
|
||
Field f(grid);
|
||
Field v(grid);
|
||
|
||
int k1 = 1;
|
||
int k2 = Nk;
|
||
|
||
Nconv = 0;
|
||
|
||
RealD beta_k;
|
||
|
||
// Set initial vector
|
||
evec[0] = src;
|
||
normalise(evec[0]);
|
||
std:: cout<<GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0])<<std::endl;
|
||
|
||
// Initial Nk steps
|
||
OrthoTime=0.;
|
||
double t0=usecond()/1e6;
|
||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||
double t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL::Initial steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||
t1=usecond()/1e6;
|
||
|
||
// Restarting loop begins
|
||
for(int iter = 0; iter<Niter; ++iter){
|
||
|
||
std::cout<<GridLogMessage<<"\n Restart iteration = "<< iter << std::endl;
|
||
|
||
//
|
||
// Rudy does a sort first which looks very different. Getting fed up with sorting out the algo defs.
|
||
// We loop over
|
||
//
|
||
OrthoTime=0.;
|
||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL:: "<<Np <<" steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||
f *= lme[Nm-1];
|
||
|
||
t1=usecond()/1e6;
|
||
|
||
|
||
// getting eigenvalues
|
||
for(int k=0; k<Nm; ++k){
|
||
eval2[k] = eval[k+k1-1];
|
||
lme2[k] = lme[k+k1-1];
|
||
}
|
||
setUnit_Qt(Nm,Qt);
|
||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL:: diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
|
||
// sorting
|
||
eval2_copy = eval2;
|
||
|
||
_sort.push(eval2,Nm);
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL:: eval sorting: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
|
||
// Implicitly shifted QR transformations
|
||
setUnit_Qt(Nm,Qt);
|
||
for(int ip=0; ip<k2; ++ip){
|
||
std::cout<<GridLogMessage << "eval "<< ip << " "<< eval2[ip] << std::endl;
|
||
}
|
||
|
||
for(int ip=k2; ip<Nm; ++ip){
|
||
std::cout<<GridLogMessage << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
|
||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||
|
||
}
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL::qr_decomp: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
assert(k2<Nm);
|
||
|
||
|
||
assert(k2<Nm);
|
||
assert(k1>0);
|
||
evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm);
|
||
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL::QR rotation: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
fflush(stdout);
|
||
|
||
// Compressed vector f and beta(k2)
|
||
f *= Qt[Nm-1+Nm*(k2-1)];
|
||
f += lme[k2-1] * evec[k2];
|
||
beta_k = norm2(f);
|
||
beta_k = sqrt(beta_k);
|
||
std::cout<<GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||
|
||
RealD betar = 1.0/beta_k;
|
||
evec[k2] = betar * f;
|
||
lme[k2-1] = beta_k;
|
||
|
||
// Convergence test
|
||
for(int k=0; k<Nm; ++k){
|
||
eval2[k] = eval[k];
|
||
lme2[k] = lme[k];
|
||
|
||
std::cout<<GridLogMessage << "eval2[" << k << "] = " << eval2[k] << std::endl;
|
||
}
|
||
setUnit_Qt(Nm,Qt);
|
||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL::diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
|
||
|
||
Nconv = 0;
|
||
|
||
if (iter >= Nminres) {
|
||
std::cout << GridLogMessage << "Rotation to test convergence " << std::endl;
|
||
|
||
Field ev0_orig(grid);
|
||
ev0_orig = evec[0];
|
||
|
||
evec.rotate(Qt,0,Nk,0,Nk,Nm);
|
||
|
||
{
|
||
std::cout << GridLogMessage << "Test convergence" << std::endl;
|
||
Field B(grid);
|
||
|
||
for(int j = 0; j<Nk; j+=SkipTest){
|
||
B=evec[j];
|
||
//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl;
|
||
B.checkerboard = evec[0].checkerboard;
|
||
|
||
_HermOpTest(B,v);
|
||
|
||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||
RealD vden = norm2(B);
|
||
RealD vv0 = norm2(v);
|
||
eval2[j] = vnum/vden;
|
||
v -= eval2[j]*B;
|
||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||
std::cout.precision(13);
|
||
std::cout<<GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
|
||
<<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
|
||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
|
||
<<" "<< vnum/(sqrt(vden)*sqrt(vv0))
|
||
<< " norm(B["<<j<<"])="<< vden <<std::endl;
|
||
|
||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||
if((vv<eresid*eresid) && (j == Nconv) ){
|
||
Nconv+=SkipTest;
|
||
}
|
||
}
|
||
|
||
// test if we converged, if so, terminate
|
||
t1=usecond()/1e6;
|
||
std::cout<<GridLogMessage <<"IRL::convergence testing: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||
|
||
std::cout<<GridLogMessage<<" #modes converged: "<<Nconv<<std::endl;
|
||
|
||
if( Nconv>=Nstop || beta_k < betastp){
|
||
goto converged;
|
||
}
|
||
|
||
std::cout << GridLogMessage << "Rotate back" << std::endl;
|
||
//B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
|
||
{
|
||
Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk);
|
||
for (int k=0;k<Nk;k++)
|
||
for (int j=0;j<Nk;j++)
|
||
qm(j,k) = Qt[k+Nm*j];
|
||
GridStopWatch timeInv;
|
||
timeInv.Start();
|
||
Eigen::MatrixXd qmI = qm.inverse();
|
||
timeInv.Stop();
|
||
std::vector<RealD> QtI(Nm*Nm);
|
||
for (int k=0;k<Nk;k++)
|
||
for (int j=0;j<Nk;j++)
|
||
QtI[k+Nm*j] = qmI(j,k);
|
||
|
||
RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
|
||
assert(res_check_rotate_inverse < 1e-7);
|
||
evec.rotate(QtI,0,Nk,0,Nk,Nm);
|
||
|
||
axpy(ev0_orig,-1.0,evec[0],ev0_orig);
|
||
std::cout << GridLogMessage << "Rotation done (in " << timeInv.Elapsed() << " = " << timeInv.useconds() << " us" <<
|
||
", error = " << res_check_rotate_inverse <<
|
||
"); | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
|
||
}
|
||
}
|
||
} else {
|
||
std::cout << GridLogMessage << "iter < Nminres: do not yet test for convergence\n";
|
||
} // end of iter loop
|
||
}
|
||
|
||
std::cout<<GridLogMessage<<"\n NOT converged.\n";
|
||
abort();
|
||
|
||
converged:
|
||
|
||
if (SkipTest == 1) {
|
||
eval = eval2;
|
||
} else {
|
||
|
||
// test quickly
|
||
for (int j=0;j<Nstop;j+=SkipTest) {
|
||
std::cout<<GridLogMessage << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
|
||
}
|
||
|
||
eval2_copy.resize(eval2.size());
|
||
eval = eval2_copy;
|
||
}
|
||
|
||
evec.sortInPlace(eval,reverse);
|
||
|
||
{
|
||
|
||
// test
|
||
for (int j=0;j<Nstop;j++) {
|
||
std::cout<<GridLogMessage << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
|
||
}
|
||
}
|
||
|
||
//_sort.push(eval,evec,Nconv);
|
||
//evec.sort(eval,Nconv);
|
||
|
||
std::cout<<GridLogMessage << "\n Converged\n Summary :\n";
|
||
std::cout<<GridLogMessage << " -- Iterations = "<< Nconv << "\n";
|
||
std::cout<<GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||
std::cout<<GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||
}
|
||
#endif
|
||
|
||
};
|
||
|
||
}
|
||
#endif
|
||
|