1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-21 01:25:48 +01:00
Grid/lib/qcd/action/fermion/CayleyFermion5D.cc
Peter Boyle 0bc004de7c Domain wall fermions now invert ; have the basis set up for
Tanh/Zolo * (Cayley/PartFrac/ContFrac) * (Mobius/Shamir/Wilson)
Approx        Representation               Kernel.

All are done with space-time taking part in checkerboarding, Ls uncheckerboarded

Have only so far tested the Domain Wall limit of mobius, and at that only checked
that it
i)  Inverts
ii) 5dim DW == Ls copies of 4dim D2
iii) MeeInv Mee == 1
iv) Meo+Mee+Moe+Moo == M unprec.
v) MpcDagMpc is hermitan
vi) Mdag is the adjoint of M between stochastic vectors.

That said, the RB schur solve, RB MpcDagMpc solve, Unprec solve
all converge and the true residual becomes small; so pretty good tests.
2015-06-02 16:57:12 +01:00

236 lines
7.1 KiB
C++

#include <Grid.h>
namespace Grid {
namespace QCD {
CayleyFermion5D::CayleyFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
WilsonFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_M5),
mass(_mass)
{
std::cout << "Constructing a CayleyFermion5D"<<std::endl;
}
// override multiply
RealD CayleyFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion Din(psi._grid);
// Assemble Din
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// Din = bs psi[s] + cs[s] psi[s+1}
axpby_ssp_pminus(Din,bs[s],psi,cs[s],psi,s,s+1);
// Din+= -mass*cs[s] psi[s+1}
axpby_ssp_pplus (Din,1.0,Din,-mass*cs[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(Din,bs[s],psi,-mass*cs[s],psi,s,0);
axpby_ssp_pplus (Din,1.0,Din,cs[s],psi,s,s-1);
} else {
axpby_ssp_pminus(Din,bs[s],psi,cs[s],psi,s,s+1);
axpby_ssp_pplus(Din,1.0,Din,cs[s],psi,s,s-1);
}
}
DW(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi);
for(int s=0;s<Ls;s++){
if ( s==0 ){
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,mass,psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,1.0,chi,mass,psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s-1);
} else {
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s-1);
}
}
return norm2(chi);
}
RealD CayleyFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
{
// Under adjoint
//D1+ D1- P- -> D1+^dag P+ D2-^dag
//D2- P+ D2+ P-D1-^dag D2+dag
LatticeFermion Din(psi._grid);
// Apply Dw
DW(psi,Din,DaggerYes);
for(int s=0;s<Ls;s++){
// Collect the terms in DW
// Chi = bs Din[s] + cs[s] Din[s+1}
// Chi+= -mass*cs[s] psi[s+1}
if ( s==0 ) {
axpby_ssp_pplus (chi,bs[s],Din,cs[s+1],Din,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,-mass*cs[Ls-1],Din,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,bs[s],Din,-mass*cs[0],Din,s,0);
axpby_ssp_pminus(chi,1.0,chi,cs[s-1],Din,s,s-1);
} else {
axpby_ssp_pplus (chi,bs[s],Din,cs[s+1],Din,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,cs[s-1],Din,s,s-1);
}
// Collect the terms indept of DW
if ( s==0 ){
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,mass,psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,1.0,chi,mass,psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s-1);
} else {
axpby_ssp_pplus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s-1);
}
}
// ((b D_W + D_w hop terms +1) on s-diag
axpby (chi,1.0,1.0,chi,psi);
return norm2(chi);
}
// half checkerboard operations
void CayleyFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion tmp(psi._grid);
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// tmp = bs psi[s] + cs[s] psi[s+1}
// tmp+= -mass*cs[s] psi[s+1}
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi ,s, s+1);
axpby_ssp_pplus(tmp,1.0,tmp,mass*ceo[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(tmp,beo[s],psi,mass*ceo[s],psi,s,0);
axpby_ssp_pplus(tmp,1.0,tmp,-ceo[s],psi,s,s-1);
} else {
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi,s,s+1);
axpby_ssp_pplus (tmp,1.0,tmp,-ceo[s],psi,s,s-1);
}
}
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(tmp,chi,DaggerNo);
} else {
DhopOE(tmp,chi,DaggerNo);
}
}
void CayleyFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion tmp(psi._grid);
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,tmp,DaggerYes);
} else {
DhopOE(psi,tmp,DaggerYes);
}
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pplus(chi,beo[s],tmp, -ceo[s+1] ,tmp,s,s+1);
axpby_ssp_pminus(chi, 1.0,chi,mass*ceo[Ls-1],tmp,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus(chi,beo[s],tmp,mass*ceo[0],tmp,s,0);
axpby_ssp_pminus(chi,1.0,chi,-ceo[s-1],tmp,s,s-1);
} else {
axpby_ssp_pplus(chi,beo[s],tmp,-ceo[s+1],tmp,s,s+1);
axpby_ssp_pminus(chi,1.0 ,chi,-ceo[s-1],tmp,s,s-1);
}
}
}
void CayleyFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pminus(chi,bee[s],psi ,-cee[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,mass*cee[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,bee[s],psi,mass*cee[s],psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,-cee[s],psi,s,s-1);
} else {
axpby_ssp_pminus(chi,bee[s],psi,-cee[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,-cee[s],psi,s,s-1);
}
}
}
void CayleyFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){
// Assemble the 5d matrix
if ( s==0 ) {
axpby_ssp_pplus(chi,bee[s],psi,-cee[s+1] ,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,mass*cee[Ls-1],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus(chi,bee[s],psi,mass*cee[0],psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,-cee[s-1],psi,s,s-1);
} else {
axpby_ssp_pplus(chi,bee[s],psi,-cee[s+1],psi,s,s+1);
axpby_ssp_pminus(chi,1.0 ,chi,-cee[s-1],psi,s,s-1);
}
}
}
void CayleyFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply (L^{\prime})^{-1}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pplus(chi,1.0,psi,-lee[s-1],chi,s,s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for (int s=0;s<Ls-1;s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi,1.0,chi,-leem[s],chi,Ls-1,s);
}
// U_m^{-1} D^{-1}
for (int s=0;s<Ls-1;s++){
// Chi[s] + 1/d chi[s]
axpby_ssp_pplus(chi,1.0/dee[s],chi,-ueem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
// Apply U^{-1}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pminus (chi,1.0,chi,-uee[s],chi,s,s+1); // chi[Ls]
}
}
void CayleyFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply (U^{\prime})^{-dagger}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,psi,-uee[s-1],chi,s,s-1);
}
// U_m^{-\dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pplus(chi,1.0,chi,-ueem[s],chi,Ls-1,s);
}
// L_m^{-\dagger} D^{-dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pminus(chi,1.0/dee[s],chi,-leem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
// Apply L^{-dagger}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pplus (chi,1.0,chi,-lee[s],chi,s,s+1); // chi[Ls]
}
}
}
}