mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
921 lines
38 KiB
C++
921 lines
38 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
|
|
|
|
Copyright (C) 2015-2016
|
|
|
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
|
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Grid/Grid.h>
|
|
|
|
using namespace Grid;
|
|
|
|
//Production binary for the 40ID G-parity ensemble
|
|
|
|
struct RatQuoParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
|
|
double, bnd_lo,
|
|
double, bnd_hi,
|
|
Integer, action_degree,
|
|
double, action_tolerance,
|
|
Integer, md_degree,
|
|
double, md_tolerance,
|
|
Integer, reliable_update_freq,
|
|
Integer, bnd_check_freq);
|
|
RatQuoParameters() {
|
|
bnd_lo = 1e-2;
|
|
bnd_hi = 30;
|
|
action_degree = 10;
|
|
action_tolerance = 1e-10;
|
|
md_degree = 10;
|
|
md_tolerance = 1e-8;
|
|
bnd_check_freq = 20;
|
|
reliable_update_freq = 50;
|
|
}
|
|
|
|
void Export(RationalActionParams &into) const{
|
|
into.lo = bnd_lo;
|
|
into.hi = bnd_hi;
|
|
into.action_degree = action_degree;
|
|
into.action_tolerance = action_tolerance;
|
|
into.md_degree = md_degree;
|
|
into.md_tolerance = md_tolerance;
|
|
into.BoundsCheckFreq = bnd_check_freq;
|
|
}
|
|
};
|
|
|
|
struct EOFAparameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
|
|
OneFlavourRationalParams, rat_params,
|
|
double, action_tolerance,
|
|
double, action_mixcg_inner_tolerance,
|
|
double, md_tolerance,
|
|
double, md_mixcg_inner_tolerance);
|
|
|
|
EOFAparameters() {
|
|
action_mixcg_inner_tolerance = 1e-8;
|
|
action_tolerance = 1e-10;
|
|
md_tolerance = 1e-8;
|
|
md_mixcg_inner_tolerance = 1e-8;
|
|
|
|
rat_params.lo = 1.0;
|
|
rat_params.hi = 25.0;
|
|
rat_params.MaxIter = 50000;
|
|
rat_params.tolerance= 1.0e-9;
|
|
rat_params.degree = 14;
|
|
rat_params.precision= 50;
|
|
}
|
|
};
|
|
|
|
struct EvolParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
|
|
Integer, StartTrajectory,
|
|
Integer, Trajectories,
|
|
Integer, SaveInterval,
|
|
Integer, Steps,
|
|
RealD, TrajectoryLength,
|
|
bool, MetropolisTest,
|
|
std::string, StartingType,
|
|
std::vector<Integer>, GparityDirs,
|
|
std::vector<EOFAparameters>, eofa_l,
|
|
RatQuoParameters, rat_quo_s,
|
|
RatQuoParameters, rat_quo_DSDR);
|
|
|
|
EvolParameters() {
|
|
//For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
|
|
MetropolisTest = false;
|
|
StartTrajectory = 0;
|
|
Trajectories = 50;
|
|
SaveInterval = 5;
|
|
StartingType = "ColdStart";
|
|
GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
|
|
Steps = 5;
|
|
TrajectoryLength = 1.0;
|
|
}
|
|
};
|
|
|
|
bool fileExists(const std::string &fn){
|
|
std::ifstream f(fn);
|
|
return f.good();
|
|
}
|
|
|
|
|
|
|
|
|
|
struct LanczosParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
|
double, alpha,
|
|
double, beta,
|
|
double, mu,
|
|
int, ord,
|
|
int, n_stop,
|
|
int, n_want,
|
|
int, n_use,
|
|
double, tolerance);
|
|
|
|
LanczosParameters() {
|
|
alpha = 35;
|
|
beta = 5;
|
|
mu = 0;
|
|
ord = 100;
|
|
n_stop = 10;
|
|
n_want = 10;
|
|
n_use = 15;
|
|
tolerance = 1e-6;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template<typename FermionActionD, typename FermionFieldD>
|
|
void computeEigenvalues(std::string param_file,
|
|
GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
|
FermionActionD &action, GridParallelRNG &rng){
|
|
|
|
LanczosParameters params;
|
|
if(fileExists(param_file)){
|
|
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
|
Grid::XmlReader rd(param_file);
|
|
read(rd, "LanczosParameters", params);
|
|
}else if(!GlobalSharedMemory::WorldRank){
|
|
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
|
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
|
Grid::XmlWriter wr(param_file + ".templ");
|
|
write(wr, "LanczosParameters", params);
|
|
}
|
|
|
|
FermionFieldD gauss_o(rbGrid);
|
|
FermionFieldD gauss(Grid);
|
|
gaussian(rng, gauss);
|
|
pickCheckerboard(Odd, gauss_o, gauss);
|
|
|
|
action.ImportGauge(latt);
|
|
|
|
SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
|
|
PlainHermOp<FermionFieldD> hermop_wrap(hermop);
|
|
//ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
|
|
assert(params.mu == 0.0);
|
|
|
|
Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
|
|
FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
|
|
|
|
std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
|
|
ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 50000);
|
|
|
|
std::vector<RealD> eval(params.n_use);
|
|
std::vector<FermionFieldD> evec(params.n_use, rbGrid);
|
|
int Nconv;
|
|
IRL.calc(eval, evec, gauss_o, Nconv);
|
|
|
|
std::cout << "Eigenvalues:" << std::endl;
|
|
for(int i=0;i<params.n_want;i++){
|
|
std::cout << i << " " << eval[i] << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
//Check the quality of the RHMC approx
|
|
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
|
|
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
|
|
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt, //expect lattice to have been initialized to something
|
|
FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
|
|
int inv_pow, const std::string &quark_descr, int action_or_md){
|
|
assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
|
|
|
|
FermionFieldD gauss_o(rbGrid);
|
|
FermionFieldD gauss(Grid);
|
|
gaussian(rng, gauss);
|
|
pickCheckerboard(Odd, gauss_o, gauss);
|
|
|
|
numOp.ImportGauge(latt);
|
|
denOp.ImportGauge(latt);
|
|
|
|
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
|
SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
|
|
SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
|
|
|
|
PowerMethod<FermionFieldD> power_method;
|
|
RealD lambda_max;
|
|
|
|
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
|
|
|
|
lambda_max = power_method(MdagM,gauss_o);
|
|
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
|
|
|
std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
|
|
lambda_max = power_method(VdagV,gauss_o);
|
|
std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
|
|
|
|
if(action_or_md == 0 || action_or_md == 2){
|
|
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
|
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
|
|
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
|
|
|
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
|
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
|
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
|
|
|
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
|
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
|
|
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
|
|
|
std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
|
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
|
|
std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
|
}
|
|
|
|
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
|
|
|
if(action_or_md == 1 || action_or_md == 2){
|
|
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
|
InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD);
|
|
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
|
|
|
|
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
|
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
|
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
|
|
|
|
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
|
InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
|
|
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
|
|
|
|
std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
|
InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
|
|
std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
template<typename FermionImplPolicy>
|
|
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
|
GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
|
|
std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
|
|
typename FermionImplPolicy::FermionField eta(FGrid);
|
|
RealD scale = std::sqrt(0.5);
|
|
gaussian(rng,eta); eta = eta * scale;
|
|
|
|
//Use the inbuilt check
|
|
EOFA.refresh(latt, eta);
|
|
EOFA.S(latt);
|
|
std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
|
|
}
|
|
|
|
|
|
template<typename FermionImplPolicy>
|
|
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
|
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
|
LatticeGaugeFieldD &U;
|
|
public:
|
|
EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
|
|
|
typedef typename FermionImplPolicy::FermionField Field;
|
|
void OpDiag (const Field &in, Field &out){ assert(0); }
|
|
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
|
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
|
|
|
void Op (const Field &in, Field &out){ assert(0); }
|
|
void AdjOp (const Field &in, Field &out){ assert(0); }
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
|
void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
|
|
};
|
|
|
|
template<typename FermionImplPolicy>
|
|
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
|
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
|
std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
|
|
EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
|
|
typename FermionImplPolicy::FermionField eta(FGrid);
|
|
gaussian(rng,eta);
|
|
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
|
auto lambda_max = power_method(linop,eta);
|
|
std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
|
|
}
|
|
|
|
//Applications of M^{-1} cost the same as M for EOFA!
|
|
template<typename FermionImplPolicy>
|
|
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
|
|
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
|
|
LatticeGaugeFieldD &U;
|
|
public:
|
|
EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
|
|
|
|
typedef typename FermionImplPolicy::FermionField Field;
|
|
void OpDiag (const Field &in, Field &out){ assert(0); }
|
|
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
|
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
|
|
|
void Op (const Field &in, Field &out){ assert(0); }
|
|
void AdjOp (const Field &in, Field &out){ assert(0); }
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
|
|
void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
|
|
};
|
|
|
|
template<typename FermionImplPolicy>
|
|
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
|
|
GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
|
|
std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
|
|
EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
|
|
typename FermionImplPolicy::FermionField eta(FGrid);
|
|
gaussian(rng,eta);
|
|
PowerMethod<typename FermionImplPolicy::FermionField> power_method;
|
|
auto lambda_max = power_method(linop,eta);
|
|
std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
|
|
}
|
|
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
|
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
|
public:
|
|
typedef typename FermionOperatorD::FermionField FieldD;
|
|
typedef typename FermionOperatorF::FermionField FieldF;
|
|
|
|
using OperatorFunction<FieldD>::operator();
|
|
|
|
RealD Tolerance;
|
|
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
|
Integer MaxInnerIterations;
|
|
Integer MaxOuterIterations;
|
|
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
|
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
|
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
|
|
|
FermionOperatorF &FermOpF;
|
|
FermionOperatorD &FermOpD;;
|
|
SchurOperatorF &LinOpF;
|
|
SchurOperatorD &LinOpD;
|
|
|
|
Integer TotalInnerIterations; //Number of inner CG iterations
|
|
Integer TotalOuterIterations; //Number of restarts
|
|
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
|
|
|
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
|
|
Integer maxinnerit,
|
|
Integer maxouterit,
|
|
GridBase* _sp_grid4,
|
|
GridBase* _sp_grid5,
|
|
FermionOperatorF &_FermOpF,
|
|
FermionOperatorD &_FermOpD,
|
|
SchurOperatorF &_LinOpF,
|
|
SchurOperatorD &_LinOpD):
|
|
LinOpF(_LinOpF),
|
|
LinOpD(_LinOpD),
|
|
FermOpF(_FermOpF),
|
|
FermOpD(_FermOpD),
|
|
Tolerance(tol),
|
|
InnerTolerance(tol),
|
|
MaxInnerIterations(maxinnerit),
|
|
MaxOuterIterations(maxouterit),
|
|
SinglePrecGrid4(_sp_grid4),
|
|
SinglePrecGrid5(_sp_grid5),
|
|
OuterLoopNormMult(100.)
|
|
{
|
|
};
|
|
|
|
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
|
|
|
std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
|
|
|
|
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
|
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
|
|
|
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
|
|
|
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
|
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Make a mixed precision conjugate gradient
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
|
|
MPCG.InnerTolerance = InnerTolerance;
|
|
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
|
|
MPCG(src,psi);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
|
|
class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
|
|
public:
|
|
typedef typename FermionOperatorD::FermionField FieldD;
|
|
typedef typename FermionOperatorF::FermionField FieldF;
|
|
|
|
using OperatorFunction<FieldD>::operator();
|
|
|
|
RealD Tolerance;
|
|
Integer MaxIterations;
|
|
|
|
RealD Delta; //reliable update parameter
|
|
|
|
GridBase* SinglePrecGrid4; //Grid for single-precision fields
|
|
GridBase* SinglePrecGrid5; //Grid for single-precision fields
|
|
|
|
FermionOperatorF &FermOpF;
|
|
FermionOperatorD &FermOpD;;
|
|
SchurOperatorF &LinOpF;
|
|
SchurOperatorD &LinOpD;
|
|
|
|
MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol,
|
|
RealD delta,
|
|
Integer maxit,
|
|
GridBase* _sp_grid4,
|
|
GridBase* _sp_grid5,
|
|
FermionOperatorF &_FermOpF,
|
|
FermionOperatorD &_FermOpD,
|
|
SchurOperatorF &_LinOpF,
|
|
SchurOperatorD &_LinOpD):
|
|
LinOpF(_LinOpF),
|
|
LinOpD(_LinOpD),
|
|
FermOpF(_FermOpF),
|
|
FermOpD(_FermOpD),
|
|
Tolerance(tol),
|
|
Delta(delta),
|
|
MaxIterations(maxit),
|
|
SinglePrecGrid4(_sp_grid4),
|
|
SinglePrecGrid5(_sp_grid5)
|
|
{
|
|
};
|
|
|
|
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
|
|
|
|
std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
|
|
|
|
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
|
|
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
|
|
|
|
precisionChange(FermOpF.Umu, FermOpD.Umu);
|
|
|
|
pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
|
|
pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Make a mixed precision conjugate gradient
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
|
|
std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
|
|
MPCG(src,psi);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
NAMESPACE_END(Grid);
|
|
|
|
|
|
|
|
|
|
|
|
int main(int argc, char **argv) {
|
|
#if 0
|
|
Grid_init(&argc, &argv);
|
|
int threads = GridThread::GetThreads();
|
|
// here make a routine to print all the relevant information on the run
|
|
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
|
|
|
std::string param_file = "params.xml";
|
|
bool file_load_check = false;
|
|
|
|
std::string serial_seeds = "1 2 3 4 5";
|
|
std::string parallel_seeds = "6 7 8 9 10";
|
|
|
|
int i=1;
|
|
while(i < argc){
|
|
std::string sarg(argv[i]);
|
|
if(sarg == "--param_file"){
|
|
assert(i!=argc-1);
|
|
param_file = argv[i+1];
|
|
i+=2;
|
|
}else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
|
|
file_load_check = true;
|
|
i++;
|
|
}else if(sarg == "--set_seeds"){ //set the rng seeds. Expects two vector args, e.g. --set_seeds 1.2.3.4 5.6.7.8
|
|
assert(i < argc-2);
|
|
std::vector<int> tmp;
|
|
GridCmdOptionIntVector(argv[i+1],tmp);
|
|
{
|
|
std::stringstream ss;
|
|
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
|
|
ss << tmp.back();
|
|
serial_seeds = ss.str();
|
|
}
|
|
GridCmdOptionIntVector(argv[i+2],tmp);
|
|
{
|
|
std::stringstream ss;
|
|
for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
|
|
ss << tmp.back();
|
|
parallel_seeds = ss.str();
|
|
}
|
|
i+=3;
|
|
std::cout << GridLogMessage << "Set serial seeds to " << serial_seeds << std::endl;
|
|
std::cout << GridLogMessage << "Set parallel seeds to " << parallel_seeds << std::endl;
|
|
|
|
}else{
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
//Read the user parameters
|
|
EvolParameters user_params;
|
|
|
|
if(fileExists(param_file)){
|
|
std::cout << GridLogMessage << " Reading " << param_file << std::endl;
|
|
Grid::XmlReader rd(param_file);
|
|
read(rd, "Params", user_params);
|
|
}else if(!GlobalSharedMemory::WorldRank){
|
|
std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
|
|
std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
|
|
{
|
|
Grid::XmlWriter wr(param_file + ".templ");
|
|
write(wr, "Params", user_params);
|
|
}
|
|
std::cout << GridLogMessage << " Done" << std::endl;
|
|
Grid_finalize();
|
|
return 0;
|
|
}
|
|
|
|
//Check the parameters
|
|
if(user_params.GparityDirs.size() != Nd-1){
|
|
std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
|
|
exit(1);
|
|
}
|
|
for(int i=0;i<Nd-1;i++)
|
|
if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
|
|
std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
|
|
exit(1);
|
|
}
|
|
|
|
|
|
typedef GparityMobiusEOFAFermionD EOFAactionD;
|
|
typedef GparityMobiusFermionD FermionActionD;
|
|
typedef typename FermionActionD::Impl_t FermionImplPolicyD;
|
|
typedef typename FermionActionD::FermionField FermionFieldD;
|
|
|
|
typedef GparityMobiusEOFAFermionF EOFAactionF;
|
|
typedef GparityMobiusFermionF FermionActionF;
|
|
typedef typename FermionActionF::Impl_t FermionImplPolicyF;
|
|
typedef typename FermionActionF::FermionField FermionFieldF;
|
|
|
|
typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
|
|
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
|
|
|
|
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
|
IntegratorParameters MD;
|
|
typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
|
|
MD.name = std::string("MinimumNorm2");
|
|
|
|
// typedef ConjugateHMCRunnerD<ForceGradient> HMCWrapper;
|
|
// MD.name = std::string("ForceGradient");
|
|
|
|
MD.MDsteps = user_params.Steps;
|
|
MD.trajL = user_params.TrajectoryLength;
|
|
|
|
typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
|
|
|
|
HMCparameters HMCparams;
|
|
HMCparams.StartTrajectory = user_params.StartTrajectory;
|
|
HMCparams.Trajectories = user_params.Trajectories;
|
|
HMCparams.NoMetropolisUntil= 0;
|
|
HMCparams.StartingType = user_params.StartingType;
|
|
HMCparams.MetropolisTest = user_params.MetropolisTest;
|
|
HMCparams.MD = MD;
|
|
HMCWrapper TheHMC(HMCparams);
|
|
|
|
// Grid from the command line arguments --grid and --mpi
|
|
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
|
|
|
|
CheckpointerParameters CPparams;
|
|
CPparams.config_prefix = "ckpoint_lat";
|
|
CPparams.rng_prefix = "ckpoint_rng";
|
|
CPparams.saveInterval = user_params.SaveInterval;
|
|
CPparams.format = "IEEE64BIG";
|
|
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
|
|
|
//Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
|
|
RNGModuleParameters RNGpar;
|
|
RNGpar.serial_seeds = serial_seeds;
|
|
RNGpar.parallel_seeds = parallel_seeds;
|
|
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
|
|
|
typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
|
|
TheHMC.Resources.AddObservable<PlaqObs>();
|
|
//////////////////////////////////////////////
|
|
//aiming for ainv=1.723 GeV
|
|
// me bob
|
|
//Estimated a(ml+mres) [40ID] = 0.001305 0.00131
|
|
// a(mh+mres) [40ID] = 0.035910 0.03529
|
|
//Estimate Ls=12, b+c=2 mres~0.0011
|
|
|
|
//1/24/2022 initial mres measurement gives mres=0.001, adjusted light quark mass to 0.0003 from 0.0001
|
|
|
|
const int Ls = 12;
|
|
Real beta = 1.848;
|
|
Real light_mass = 0.0003;
|
|
Real strange_mass = 0.0342;
|
|
Real pv_mass = 1.0;
|
|
RealD M5 = 1.8;
|
|
RealD mobius_scale = 2.; //b+c
|
|
|
|
RealD mob_bmc = 1.0;
|
|
RealD mob_b = (mobius_scale + mob_bmc)/2.;
|
|
RealD mob_c = (mobius_scale - mob_bmc)/2.;
|
|
|
|
std::cout << GridLogMessage
|
|
<< "Ensemble parameters:" << std::endl
|
|
<< "Ls=" << Ls << std::endl
|
|
<< "beta=" << beta << std::endl
|
|
<< "light_mass=" << light_mass << std::endl
|
|
<< "strange_mass=" << strange_mass << std::endl
|
|
<< "mobius_scale=" << mobius_scale << std::endl;
|
|
|
|
//Setup the Grids
|
|
auto UGridD = TheHMC.Resources.GetCartesian();
|
|
auto UrbGridD = TheHMC.Resources.GetRBCartesian();
|
|
auto FGridD = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
|
|
auto FrbGridD = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
|
|
|
|
GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
|
GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
|
|
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
|
|
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
|
|
|
|
ConjugateIwasakiGaugeActionD GaugeAction(beta);
|
|
|
|
// temporarily need a gauge field
|
|
LatticeGaugeFieldD Ud(UGridD);
|
|
LatticeGaugeFieldF Uf(UGridF);
|
|
|
|
//Setup the BCs
|
|
FermionActionD::ImplParams Params;
|
|
for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
|
|
Params.twists[Nd-1] = 1; //APBC in time direction
|
|
|
|
std::vector<int> dirs4(Nd);
|
|
for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
|
|
dirs4[Nd-1] = 0; //periodic gauge BC in time
|
|
|
|
GaugeImplPolicy::setDirections(dirs4); //gauge BC
|
|
|
|
//Run optional gauge field checksum checker and exit
|
|
if(file_load_check){
|
|
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
|
std::cout << GridLogMessage << " Done" << std::endl;
|
|
Grid_finalize();
|
|
return 0;
|
|
}
|
|
|
|
|
|
////////////////////////////////////
|
|
// Collect actions
|
|
////////////////////////////////////
|
|
ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
|
|
ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
|
|
ActionLevel<HMCWrapper::Field> Level3(2); //gauge
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Light EOFA action
|
|
// have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
|
|
/////////////////////////////////////////////////////////////
|
|
typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
|
|
typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
|
|
typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
|
|
typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
|
|
typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
|
|
|
|
|
|
std::vector<RealD> eofa_light_masses = { light_mass , 0.004, 0.016, 0.064, 0.256 };
|
|
std::vector<RealD> eofa_pv_masses = { 0.004 , 0.016, 0.064, 0.256, 1.0 };
|
|
int n_light_hsb = 5;
|
|
assert(user_params.eofa_l.size() == n_light_hsb);
|
|
|
|
EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
|
|
|
|
for(int i=0;i<n_light_hsb;i++){
|
|
RealD iml = eofa_light_masses[i];
|
|
RealD ipv = eofa_pv_masses[i];
|
|
|
|
EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
|
EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
|
|
EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
|
EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
|
|
|
|
EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
|
|
EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
|
|
|
|
EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
|
|
EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
|
|
|
|
#if 1
|
|
//Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance as Delta for now
|
|
EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
|
EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
|
|
|
EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
|
EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
|
|
|
#else
|
|
EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
|
ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
|
|
|
EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
|
ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
|
|
|
|
EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
|
|
DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
|
|
|
EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
|
|
DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
|
|
|
|
std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
|
|
std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
|
|
#endif
|
|
|
|
EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
|
|
*LopD, *RopD,
|
|
*ActionMCG_L, *ActionMCG_R,
|
|
*ActionMCG_L, *ActionMCG_R,
|
|
*DerivMCG_L, *DerivMCG_R,
|
|
user_params.eofa_l[i].rat_params, true);
|
|
EOFA_pfactions[i] = EOFA;
|
|
Level1.push_back(EOFA);
|
|
}
|
|
|
|
////////////////////////////////////
|
|
// Strange action
|
|
////////////////////////////////////
|
|
FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
|
|
FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
|
|
|
|
FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
|
|
FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
|
|
|
|
RationalActionParams rat_act_params_s;
|
|
rat_act_params_s.inv_pow = 4; // (M^dag M)^{1/4}
|
|
rat_act_params_s.precision= 60;
|
|
rat_act_params_s.MaxIter = 50000;
|
|
user_params.rat_quo_s.Export(rat_act_params_s);
|
|
std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
|
|
|
//MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq);
|
|
DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s);
|
|
Level1.push_back(&Quotient_s);
|
|
|
|
///////////////////////////////////
|
|
// DSDR action
|
|
///////////////////////////////////
|
|
RealD dsdr_mass=-1.8;
|
|
//Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
|
|
RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
|
|
RealD dsdr_epsilon_b = 0.5;
|
|
GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
|
|
GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
|
|
|
|
GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
|
|
GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
|
|
|
|
RationalActionParams rat_act_params_DSDR;
|
|
rat_act_params_DSDR.inv_pow = 2; // (M^dag M)^{1/2}
|
|
rat_act_params_DSDR.precision= 60;
|
|
rat_act_params_DSDR.MaxIter = 50000;
|
|
user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
|
|
std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
|
|
|
|
DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
|
|
Level2.push_back(&Quotient_DSDR);
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Gauge action
|
|
/////////////////////////////////////////////////////////////
|
|
Level3.push_back(&GaugeAction);
|
|
|
|
TheHMC.TheAction.push_back(Level1);
|
|
TheHMC.TheAction.push_back(Level2);
|
|
TheHMC.TheAction.push_back(Level3);
|
|
std::cout << GridLogMessage << " Action complete "<< std::endl;
|
|
|
|
|
|
//Action tuning
|
|
bool
|
|
tune_rhmc_s=false, eigenrange_s=false,
|
|
tune_rhmc_DSDR=false, eigenrange_DSDR=false,
|
|
check_eofa=false,
|
|
upper_bound_eofa=false, lower_bound_eofa(false);
|
|
|
|
std::string lanc_params_s;
|
|
std::string lanc_params_DSDR;
|
|
int tune_rhmc_s_action_or_md;
|
|
int tune_rhmc_DSDR_action_or_md;
|
|
int eofa_which_hsb;
|
|
|
|
for(int i=1;i<argc;i++){
|
|
std::string sarg(argv[i]);
|
|
if(sarg == "--tune_rhmc_s"){
|
|
assert(i < argc-1);
|
|
tune_rhmc_s=true;
|
|
tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
|
|
}
|
|
else if(sarg == "--eigenrange_s"){
|
|
assert(i < argc-1);
|
|
eigenrange_s=true;
|
|
lanc_params_s = argv[i+1];
|
|
}
|
|
else if(sarg == "--tune_rhmc_DSDR"){
|
|
assert(i < argc-1);
|
|
tune_rhmc_DSDR=true;
|
|
tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
|
|
}
|
|
else if(sarg == "--eigenrange_DSDR"){
|
|
assert(i < argc-1);
|
|
eigenrange_DSDR=true;
|
|
lanc_params_DSDR = argv[i+1];
|
|
}
|
|
else if(sarg == "--check_eofa"){
|
|
assert(i < argc-1);
|
|
check_eofa = true;
|
|
eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
|
|
assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
|
|
}
|
|
else if(sarg == "--upper_bound_eofa"){
|
|
assert(i < argc-1);
|
|
upper_bound_eofa = true;
|
|
eofa_which_hsb = std::stoi(argv[i+1]);
|
|
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
|
}
|
|
else if(sarg == "--lower_bound_eofa"){
|
|
assert(i < argc-1);
|
|
lower_bound_eofa = true;
|
|
eofa_which_hsb = std::stoi(argv[i+1]);
|
|
assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
|
|
}
|
|
}
|
|
if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
|
|
std::cout << GridLogMessage << "Running checks" << std::endl;
|
|
TheHMC.initializeGaugeFieldAndRNGs(Ud);
|
|
|
|
//std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
|
|
//std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
|
|
|
|
if(check_eofa){
|
|
if(eofa_which_hsb >= 0){
|
|
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
|
checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
|
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
|
|
}else{
|
|
for(int i=0;i<n_light_hsb;i++){
|
|
std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
|
|
checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
|
std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
|
|
}
|
|
}
|
|
}
|
|
if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
|
if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
|
|
if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
|
|
if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange", tune_rhmc_s_action_or_md);
|
|
if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
|
|
if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
|
|
|
|
|
|
std::cout << GridLogMessage << " Done" << std::endl;
|
|
Grid_finalize();
|
|
return 0;
|
|
}
|
|
|
|
|
|
//Run the HMC
|
|
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
|
|
TheHMC.Run();
|
|
|
|
std::cout << GridLogMessage << " Done" << std::endl;
|
|
Grid_finalize();
|
|
return 0;
|
|
#endif
|
|
} // main
|