1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-12 07:00:45 +01:00
Grid/Grid/algorithms/iterative/LocalCoherenceLanczos.h
Christopher Kelly 33e4a0caee Imported changes from feature/gparity_HMC branch:
Rework of WilsonFlow class
		Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon
		Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const.
		smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset
		Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency
	        By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing
		Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors
	Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions
	To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev
	Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields
	Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique
	Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs
	Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 14:12:12 -04:00

455 lines
19 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
Copyright (C) 2015
Author: Christoph Lehner <clehner@bnl.gov>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LOCAL_COHERENCE_IRL_H
#define GRID_LOCAL_COHERENCE_IRL_H
NAMESPACE_BEGIN(Grid);
struct LanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
ChebyParams, Cheby,/*Chebyshev*/
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
int, Nk, /*Vecs in Lanczos seek converge*/
int, Nm, /*Total vecs in Lanczos include restart*/
RealD, resid, /*residual*/
int, MaxIt,
RealD, betastp, /* ? */
int, MinRes); // Must restart
};
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
bool, saveEvecs,
bool, doFine,
bool, doFineRead,
bool, doCoarse,
bool, doCoarseRead,
LanczosParams, FineParams,
LanczosParams, CoarseParams,
ChebyParams, Smoother,
RealD , coarse_relax_tol,
std::vector<int>, blockSize,
std::string, config,
std::vector < ComplexD >, omega,
RealD, mass,
RealD, M5);
};
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
template<class Fobj,class CComplex,int nbasis>
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearOperatorBase<FineField> &_Linop;
std::vector<FineField> &subspace;
ProjectedHermOp(LinearOperatorBase<FineField>& linop, std::vector<FineField> & _subspace) :
_Linop(linop), subspace(_subspace)
{
assert(subspace.size() >0);
};
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.Checkerboard()= checkerboard;
FineField fout(FineGrid); fout.Checkerboard() = checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
public:
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
OperatorFunction<FineField> & _poly;
LinearOperatorBase<FineField> &_Linop;
std::vector<FineField> &subspace;
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,
LinearOperatorBase<FineField>& linop,
std::vector<FineField> & _subspace) :
_poly(poly),
_Linop(linop),
subspace(_subspace)
{ };
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
blockProject(out,fout,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
}
};
template<class Fobj,class CComplex,int nbasis>
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LinearFunction<CoarseField> & _Poly;
OperatorFunction<FineField> & _smoother;
LinearOperatorBase<FineField> &_Linop;
RealD _coarse_relax_tol;
std::vector<FineField> &_subspace;
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
OperatorFunction<FineField> &smoother,
LinearOperatorBase<FineField> &Linop,
std::vector<FineField> &subspace,
RealD coarse_relax_tol=5.0e3,
int largestEvalIdxForReport=-1)
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
{ };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
RealD eval_poly = eval;
// Apply operator
_Poly(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
RealD tmp_eval;
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
}
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
blockPromote(B,fv,_subspace);
_smoother(_Linop,fv,fB);
RealD eval_poly = eval;
_Linop.HermOp(fB,fv);
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
RealD vden = norm2(fB);
RealD vv0 = norm2(fv);
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<std::endl;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
};
////////////////////////////////////////////
// Make serializable Lanczos params
////////////////////////////////////////////
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczos
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
protected:
GridBase *_CoarseGrid;
GridBase *_FineGrid;
int _checkerboard;
LinearOperatorBase<FineField> & _FineOp;
std::vector<RealD> &evals_fine;
std::vector<RealD> &evals_coarse;
std::vector<FineField> &subspace;
std::vector<CoarseField> &evec_coarse;
private:
std::vector<RealD> _evals_fine;
std::vector<RealD> _evals_coarse;
std::vector<FineField> _subspace;
std::vector<CoarseField> _evec_coarse;
public:
LocalCoherenceLanczos(GridBase *FineGrid,
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_FineOp(FineOp),
_checkerboard(checkerboard),
evals_fine (_evals_fine),
evals_coarse(_evals_coarse),
subspace (_subspace),
evec_coarse(_evec_coarse)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
//////////////////////////////////////////////////////////////////////////
// Alternate constructore, external storage for use by Hadrons module
//////////////////////////////////////////////////////////////////////////
LocalCoherenceLanczos(GridBase *FineGrid,
GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard,
std::vector<FineField> &ext_subspace,
std::vector<CoarseField> &ext_coarse,
std::vector<RealD> &ext_eval_fine,
std::vector<RealD> &ext_eval_coarse
) :
_CoarseGrid(CoarseGrid),
_FineGrid(FineGrid),
_FineOp(FineOp),
_checkerboard(checkerboard),
evals_fine (ext_eval_fine),
evals_coarse(ext_eval_coarse),
subspace (ext_subspace),
evec_coarse (ext_coarse)
{
evals_fine.resize(0);
evals_coarse.resize(0);
};
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
};
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = ::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
/*
void fakeFine(void)
{
int Nk = nbasis;
subspace.resize(Nk,_FineGrid);
subspace[0]=1.0;
subspace[0].Checkerboard()=_checkerboard;
normalise(subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
subspace[k].Checkerboard()=_checkerboard;
Op(subspace[k-1],subspace[k]);
normalise(subspace[k]);
}
}
*/
void testFine(RealD resid)
{
assert(evals_fine.size() == nbasis);
assert(subspace.size() == nbasis);
PlainHermOp<FineField> Op(_FineOp);
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
for(int k=0;k<nbasis;k++){
assert(SimpleTester.ReconstructEval(k,resid,subspace[k],evals_fine[k],1.0)==1);
}
}
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
assert(subspace.size() == nbasis);
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,subspace);
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
for(int k=0;k<evec_coarse.size();k++){
if ( k < nbasis ) {
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
} else {
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
}
}
}
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
assert(nbasis<=Nm);
Chebyshev<FineField> Cheby(cheby_parms);
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
PlainHermOp<FineField> Op(_FineOp);
evals_fine.resize(Nm);
subspace.resize(Nm,_FineGrid);
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid);
typedef typename FineField::scalar_type Scalar;
// src=1.0;
src=Scalar(1.0);
src.Checkerboard() = _checkerboard;
int Nconv;
IRL.calc(evals_fine,subspace,src,Nconv,false);
// Shrink down to number saved
assert(Nstop>=nbasis);
assert(Nconv>=nbasis);
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
evals_coarse.resize(Nm);
evec_coarse.resize(Nm,_CoarseGrid);
CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
assert(Nconv>=Nstop);
evals_coarse.resize(Nstop);
evec_coarse.resize (Nstop,_CoarseGrid);
for (int i=0;i<Nstop;i++){
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
};
NAMESPACE_END(Grid);
#endif