mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-09 21:50:45 +01:00
592 lines
21 KiB
C++
592 lines
21 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/serialisation/BaseIO.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_SERIALISATION_ABSTRACT_READER_H
|
|
#define GRID_SERIALISATION_ABSTRACT_READER_H
|
|
|
|
#include <type_traits>
|
|
#include <Grid/tensors/Tensors.h>
|
|
#include <Grid/serialisation/VectorUtils.h>
|
|
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
|
|
|
namespace Grid {
|
|
// Abstract writer/reader classes ////////////////////////////////////////////
|
|
// static polymorphism implemented using CRTP idiom
|
|
class Serializable;
|
|
|
|
// which types are supported scalar types for Eigen::Tensor
|
|
template<typename T> struct is_eigen_tensor_scalar : std::integral_constant<bool,
|
|
std::is_arithmetic<T>::value || Grid::is_complex<T>::value> {};
|
|
|
|
// Helper to allow iteration through an Eigen::Tensor (using a lambda)
|
|
template <typename ETensor, typename Lambda>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_grid_tensor<typename ETensor::Scalar>::value, void>::type
|
|
for_all( ETensor &ET, Lambda lambda )
|
|
{
|
|
using Scalar = typename ETensor::Scalar::scalar_type;
|
|
const std::size_t NumElements = ET.size();
|
|
assert( NumElements > 0 );
|
|
if( NumElements == 1 ) {
|
|
const auto MyRank{grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial};
|
|
std::vector<std::size_t> SubIndex(MyRank);
|
|
for( auto &idx : SubIndex ) idx = 0;
|
|
typename ETensor::Index n = 0;
|
|
for( Scalar &Source : * ET.data() ) {
|
|
lambda(Source, n++, &SubIndex[0] );
|
|
// Now increment SubIndex
|
|
for( auto i = MyRank - 1; i >= 0 && ++SubIndex[i] == 11/*ReducedDims[i]*/; i-- )
|
|
SubIndex[i] = 0;
|
|
}
|
|
}
|
|
else {
|
|
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
|
|
unsigned int TrivialDimCount{0};
|
|
std::vector<size_t> ReducedDims;
|
|
ReducedDims.reserve(ET.NumDimensions + grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial); // Make sure we only do one malloc
|
|
for(auto i = 0; i < ET.NumDimensions; i++ ) {
|
|
auto dim = ET.dimension(i);
|
|
if( dim <= 1 ) {
|
|
TrivialDimCount++;
|
|
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
|
} else {
|
|
size_t s = static_cast<size_t>(dim);
|
|
assert( s == dim ); // check we didn't lose anything in the conversion
|
|
ReducedDims.push_back(s);
|
|
}
|
|
}
|
|
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
|
assert( ET.NumDimensions > TrivialDimCount );
|
|
// Now add the extra dimensions, based on object zero
|
|
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* ET.data());
|
|
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
|
|
const std::vector<size_t> & ExtraDims{f.getDim()};
|
|
assert(ExtraDims.size() == grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial);
|
|
size_t ExtraCount{1};
|
|
for( auto i : ExtraDims ) {
|
|
assert( i > 0 );
|
|
ExtraCount *= i;
|
|
ReducedDims.push_back(i);
|
|
}
|
|
assert(grid_tensor_att<typename ETensor::Scalar>::count == ExtraCount);
|
|
assert(grid_tensor_att<typename ETensor::Scalar>::size == sizeof( typename ETensor::Scalar ));
|
|
const unsigned int ReducedDimsSize = static_cast<unsigned int>(ReducedDims.size());
|
|
assert( ReducedDimsSize == ReducedDims.size() );
|
|
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
|
|
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
std::vector<std::size_t> SubIndex(ReducedDimsSize);
|
|
for( auto &idx : SubIndex ) idx = 0;
|
|
for( typename ETensor::Index n = 0; n < TotalNumElements; ) {
|
|
for( Scalar &Source : ET( MyIndex ) ) {
|
|
lambda(Source, n++, &SubIndex[0] );
|
|
// Now increment MyIndex
|
|
for( auto i = ET.NumDimensions - 1; i >= 0 && ++MyIndex[i] == ET.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
// Now increment SubIndex
|
|
for( auto i = ReducedDimsSize - 1; i >= 0 && ++SubIndex[i] == ReducedDims[i]; i-- )
|
|
SubIndex[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Static abstract writer
|
|
template <typename T>
|
|
class Writer
|
|
{
|
|
public:
|
|
Writer(void);
|
|
virtual ~Writer(void) = default;
|
|
void push(const std::string &s);
|
|
void pop(void);
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
write(const std::string& s, const U &output);
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !std::is_base_of<Eigen::TensorBase<U, Eigen::ReadOnlyAccessors>, U>::value, void>::type
|
|
write(const std::string& s, const U &output);
|
|
template <typename U>
|
|
void write(const std::string &s, const iScalar<U> &output);
|
|
template <typename U, int N>
|
|
void write(const std::string &s, const iVector<U, N> &output);
|
|
template <typename U, int N>
|
|
void write(const std::string &s, const iMatrix<U, N> &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_eigen_tensor_scalar<typename ETensor::Scalar>::value, void>::type
|
|
write(const std::string &s, const ETensor &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_grid_tensor<typename ETensor::Scalar>::value, void>::type
|
|
write(const std::string &s, const ETensor &output);
|
|
|
|
void scientificFormat(const bool set);
|
|
bool isScientific(void);
|
|
void setPrecision(const unsigned int prec);
|
|
unsigned int getPrecision(void);
|
|
private:
|
|
T *upcast;
|
|
bool scientific_{false};
|
|
unsigned int prec_{0};
|
|
};
|
|
|
|
// Static abstract reader
|
|
template <typename T>
|
|
class Reader
|
|
{
|
|
public:
|
|
Reader(void);
|
|
virtual ~Reader(void) = default;
|
|
bool push(const std::string &s);
|
|
void pop(void);
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
read(const std::string& s, U &output);
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
|
read(const std::string& s, U &output);
|
|
template <typename U>
|
|
void read(const std::string &s, iScalar<U> &output);
|
|
template <typename U, int N>
|
|
void read(const std::string &s, iVector<U, N> &output);
|
|
template <typename U, int N>
|
|
void read(const std::string &s, iMatrix<U, N> &output);
|
|
protected:
|
|
template <typename U>
|
|
void fromString(U &output, const std::string &s);
|
|
private:
|
|
T *upcast;
|
|
};
|
|
|
|
// What is the vtype
|
|
template<typename T> struct isReader {
|
|
static const bool value = false;
|
|
};
|
|
template<typename T> struct isWriter {
|
|
static const bool value = false;
|
|
};
|
|
|
|
// Writer template implementation
|
|
template <typename T>
|
|
Writer<T>::Writer(void)
|
|
{
|
|
upcast = static_cast<T *>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::push(const std::string &s)
|
|
{
|
|
upcast->push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::pop(void)
|
|
{
|
|
upcast->pop();
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const U &output)
|
|
{
|
|
U::write(*this, s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !std::is_base_of<Eigen::TensorBase<U, Eigen::ReadOnlyAccessors>, U>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const U &output)
|
|
{
|
|
upcast->writeDefault(s, output);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Writer<T>::write(const std::string &s, const iScalar<U> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Writer<T>::write(const std::string &s, const iVector<U, N> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Writer<T>::write(const std::string &s, const iMatrix<U, N> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
// Eigen::Tensors of arithmetic/complex base type
|
|
template <typename T>
|
|
template <typename ETensor>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_eigen_tensor_scalar<typename ETensor::Scalar>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const ETensor &output)
|
|
{
|
|
const typename ETensor::Index NumElements{output.size()};
|
|
assert( NumElements > 0 );
|
|
if( NumElements == 1 )
|
|
upcast->writeDefault(s, * output.data());
|
|
else {
|
|
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
|
|
unsigned int TrivialDimCount{0};
|
|
std::vector<size_t> ReducedDims;
|
|
ReducedDims.reserve(output.NumDimensions); // Make sure we only do one malloc
|
|
for(auto i = 0; i < output.NumDimensions; i++ ) {
|
|
auto dim = output.dimension(i);
|
|
if( dim <= 1 ) {
|
|
TrivialDimCount++;
|
|
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
|
} else {
|
|
size_t s = static_cast<size_t>(dim);
|
|
assert( s == dim ); // check we didn't lose anything in the conversion
|
|
ReducedDims.push_back(s);
|
|
}
|
|
}
|
|
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
|
assert( output.NumDimensions > TrivialDimCount );
|
|
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
|
|
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
|
|
using Scalar = typename ETensor::Scalar;
|
|
const Scalar * pWriteBuffer;
|
|
Scalar * pCopyBuffer = nullptr;
|
|
if( !CopyData )
|
|
pWriteBuffer = output.data();
|
|
else {
|
|
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
|
pCopyBuffer = static_cast<Scalar *>(malloc(sizeof(Scalar) * NumElements));
|
|
pWriteBuffer = pCopyBuffer;
|
|
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
|
|
pCopyBuffer[n] = output( MyIndex );
|
|
// Now increment the index
|
|
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
}
|
|
upcast->template writeMultiDim<typename ETensor::Scalar>(s, ReducedDims, pWriteBuffer, NumElements);
|
|
if( pCopyBuffer ) free( pCopyBuffer );
|
|
}
|
|
}
|
|
|
|
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
|
|
template <typename T>
|
|
template <typename ETensor/*, typename U, int N*/>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_grid_tensor<typename ETensor::Scalar>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const ETensor &output)
|
|
{
|
|
const typename ETensor::Index NumElements{output.size()};
|
|
assert( NumElements > 0 );
|
|
if( NumElements == 1 )
|
|
upcast->writeDefault(s, tensorToVec(* output.data()));
|
|
else {
|
|
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
|
|
unsigned int TrivialDimCount{0};
|
|
std::vector<size_t> ReducedDims;
|
|
ReducedDims.reserve(output.NumDimensions + grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial); // Make sure we only do one malloc
|
|
for(auto i = 0; i < output.NumDimensions; i++ ) {
|
|
auto dim = output.dimension(i);
|
|
if( dim <= 1 ) {
|
|
TrivialDimCount++;
|
|
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
|
} else {
|
|
size_t s = static_cast<size_t>(dim);
|
|
assert( s == dim ); // check we didn't lose anything in the conversion
|
|
ReducedDims.push_back(s);
|
|
}
|
|
}
|
|
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
|
assert( output.NumDimensions > TrivialDimCount );
|
|
// Now add the extra dimensions, based on object zero
|
|
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* output.data());
|
|
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
|
|
const std::vector<size_t> & ExtraDims{f.getDim()};
|
|
assert(ExtraDims.size() == grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial);
|
|
size_t ExtraCount{1};
|
|
for( auto i : ExtraDims ) {
|
|
assert( i > 0 );
|
|
ExtraCount *= i;
|
|
ReducedDims.push_back(i);
|
|
}
|
|
assert(grid_tensor_att<typename ETensor::Scalar>::count == ExtraCount);
|
|
assert(grid_tensor_att<typename ETensor::Scalar>::size == sizeof( typename ETensor::Scalar ));
|
|
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
|
|
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
|
|
using Scalar = typename ETensor::Scalar::scalar_type;
|
|
const Scalar * pWriteBuffer;
|
|
Scalar * pCopyBuffer = nullptr;
|
|
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
|
|
if( !CopyData )
|
|
pWriteBuffer = output.data()->begin();
|
|
else {
|
|
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
|
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
|
|
pWriteBuffer = pCopyBuffer;
|
|
Scalar * pCopy = pCopyBuffer;
|
|
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
|
|
// Copy the grid tensor
|
|
for( const Scalar &Source : output( MyIndex ) )
|
|
* pCopy ++ = Source;
|
|
// Now increment the index
|
|
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
}
|
|
upcast->template writeMultiDim<Scalar>(s, ReducedDims, pWriteBuffer, TotalNumElements);
|
|
if( pCopyBuffer ) free( pCopyBuffer );
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::scientificFormat(const bool set)
|
|
{
|
|
scientific_ = set;
|
|
}
|
|
|
|
template <typename T>
|
|
bool Writer<T>::isScientific(void)
|
|
{
|
|
return scientific_;
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::setPrecision(const unsigned int prec)
|
|
{
|
|
prec_ = prec;
|
|
}
|
|
|
|
template <typename T>
|
|
unsigned int Writer<T>::getPrecision(void)
|
|
{
|
|
return prec_;
|
|
}
|
|
|
|
// Reader template implementation
|
|
template <typename T>
|
|
Reader<T>::Reader(void)
|
|
{
|
|
upcast = static_cast<T *>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
bool Reader<T>::push(const std::string &s)
|
|
{
|
|
return upcast->push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
void Reader<T>::pop(void)
|
|
{
|
|
upcast->pop();
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
Reader<T>::read(const std::string &s, U &output)
|
|
{
|
|
U::read(*this, s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
|
Reader<T>::read(const std::string &s, U &output)
|
|
{
|
|
upcast->readDefault(s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Reader<T>::read(const std::string &s, iScalar<U> &output)
|
|
{
|
|
typename TensorToVec<iScalar<U>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Reader<T>::read(const std::string &s, iVector<U, N> &output)
|
|
{
|
|
typename TensorToVec<iVector<U, N>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Reader<T>::read(const std::string &s, iMatrix<U, N> &output)
|
|
{
|
|
typename TensorToVec<iMatrix<U, N>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Reader<T>::fromString(U &output, const std::string &s)
|
|
{
|
|
std::istringstream is(s);
|
|
|
|
is.exceptions(std::ios::failbit);
|
|
try
|
|
{
|
|
is >> std::boolalpha >> output;
|
|
}
|
|
catch(std::ios_base::failure &e)
|
|
{
|
|
std::cerr << "numerical conversion failure on '" << s << "' ";
|
|
std::cerr << "(typeid: " << typeid(U).name() << ")" << std::endl;
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// serializable base class ///////////////////////////////////////////////////
|
|
class Serializable
|
|
{
|
|
public:
|
|
template <typename T>
|
|
static inline void write(Writer<T> &WR,const std::string &s,
|
|
const Serializable &obj)
|
|
{}
|
|
|
|
template <typename T>
|
|
static inline void read(Reader<T> &RD,const std::string &s,
|
|
Serializable &obj)
|
|
{}
|
|
|
|
friend inline std::ostream & operator<<(std::ostream &os,
|
|
const Serializable &obj)
|
|
{
|
|
return os;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<!std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
|
|
CompareMember(const T &lhs, const T &rhs) {
|
|
return lhs == rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
|
|
CompareMember(const T &lhs, const T &rhs) {
|
|
Eigen::Tensor<bool, 0, T::Options> bResult = (lhs == rhs).all();
|
|
return bResult(0);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
|
|
CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) {
|
|
const auto NumElements{lhs.size()};
|
|
bool bResult = ( NumElements == rhs.size() );
|
|
for( auto i = 0 ; i < NumElements && bResult ; i++ ) {
|
|
Eigen::Tensor<bool, 0, T::Options> b = (lhs[i] == rhs[i]).all();
|
|
bResult = b(0);
|
|
}
|
|
return bResult;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<!std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, void>::type
|
|
WriteMember(std::ostream &os, const T &object) {
|
|
os << object;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, void>::type
|
|
WriteMember(std::ostream &os, const T &object) {
|
|
os << "Eigen::Tensor";
|
|
}
|
|
};
|
|
|
|
// Generic writer interface //////////////////////////////////////////////////
|
|
template <typename T>
|
|
inline void push(Writer<T> &w, const std::string &s) {
|
|
w.push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void push(Writer<T> &w, const char *s)
|
|
{
|
|
w.push(std::string(s));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void pop(Writer<T> &w)
|
|
{
|
|
w.pop();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void write(Writer<T> &w, const std::string& s, const U &output)
|
|
{
|
|
w.write(s, output);
|
|
}
|
|
|
|
// Generic reader interface //////////////////////////////////////////////////
|
|
template <typename T>
|
|
inline bool push(Reader<T> &r, const std::string &s)
|
|
{
|
|
return r.push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool push(Reader<T> &r, const char *s)
|
|
{
|
|
return r.push(std::string(s));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void pop(Reader<T> &r)
|
|
{
|
|
r.pop();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void read(Reader<T> &r, const std::string &s, U &output)
|
|
{
|
|
r.read(s, output);
|
|
}
|
|
}
|
|
|
|
#endif
|