1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/Test_wilson_cg_unprec.cc
Azusa Yamaguchi a8b9109cc8 multishift conjugate gradient added and a strong test: take a diagonal
but non-identity matrix
l1 0  0  0 ....
0  l2 0  0 ....
0  0  l3 0 ...
.  .   .
.  .   .
.  .   .

And apply the multishift CG to it. Sum the poles and residues.
Insist that this be the same as the exactly taken square root
where l1,l2,l3 >= 0.
2015-06-08 11:52:44 +01:00

57 lines
1.3 KiB
C++

#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
RealD mass=0.5;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermion,LatticeFermion> HermOp(Dw);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOp,src,result);
Grid_finalize();
}