1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/lib/qcd/action/fermion/FermionOperatorImpl.h
Guido Cossu b93e18ed50 Modified the Dirac Kernel class to compile with different number of colours
Added the general push_back functionality to accomodate for all defined representations

Compiles, not tested
2016-07-18 16:36:28 +01:00

533 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FermionOperatorImpl.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_FERMION_OPERATOR_IMPL_H
#define GRID_QCD_FERMION_OPERATOR_IMPL_H
namespace Grid {
namespace QCD {
//////////////////////////////////////////////
// Template parameter class constructs to package
// externally control Fermion implementations
// in orthogonal directions
//
// Ultimately need Impl to always define types where XXX is opaque
//
// typedef typename XXX Simd;
// typedef typename XXX GaugeLinkField;
// typedef typename XXX GaugeField;
// typedef typename XXX GaugeActField;
// typedef typename XXX FermionField;
// typedef typename XXX DoubledGaugeField;
// typedef typename XXX SiteSpinor;
// typedef typename XXX SiteHalfSpinor;
// typedef typename XXX Compressor;
//
// and Methods:
// void ImportGauge(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
// void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
// void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,StencilImpl &St)
// void InsertForce4D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
// void InsertForce5D(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu)
//
//
// To acquire the typedefs from "Base" (either a base class or template param) use:
//
// INHERIT_GIMPL_TYPES(Base)
// INHERIT_FIMPL_TYPES(Base)
// INHERIT_IMPL_TYPES(Base)
//
// The Fermion operators will do the following:
//
// struct MyOpParams {
// RealD mass;
// };
//
//
// template<class Impl>
// class MyOp : public<Impl> {
// public:
//
// INHERIT_ALL_IMPL_TYPES(Impl);
//
// MyOp(MyOpParams Myparm, ImplParams &ImplParam) : Impl(ImplParam)
// {
//
// };
//
// }
//////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// Implementation dependent fermion types
////////////////////////////////////////////////////////////////////////
#define INHERIT_FIMPL_TYPES(Impl)\
typedef typename Impl::FermionField FermionField; \
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
typedef typename Impl::SiteSpinor SiteSpinor; \
typedef typename Impl::SiteHalfSpinor SiteHalfSpinor; \
typedef typename Impl::Compressor Compressor; \
typedef typename Impl::StencilImpl StencilImpl; \
typedef typename Impl::ImplParams ImplParams;
#define INHERIT_IMPL_TYPES(Base) \
INHERIT_GIMPL_TYPES(Base) \
INHERIT_FIMPL_TYPES(Base)
///////
// Single flavour four spinors with colour index
///////
template <class S, class Representation = FundamentalRepresentation >
class WilsonImpl
: public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
// static const int Nrepresentation = Representation::Dimension;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype>
using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
template <typename vtype>
using iImplHalfSpinor =
iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype>
using iImplDoubledGaugeField =
iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
ImplParams Params;
WilsonImpl(const ImplParams &p = ImplParams()) : Params(p){};
bool overlapCommsCompute(void) { return Params.overlapCommsCompute; };
inline void multLink(SiteHalfSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi,
int mu,
StencilEntry *SE,
StencilImpl &St) {
mult(&phi(), &U(mu), &chi());
}
template <class ref>
inline void loadLinkElement(Simd &reg,
ref &memory) {
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &Uds,
const GaugeField &Umu) {
conformable(Uds._grid, GaugeGrid);
conformable(Umu._grid, GaugeGrid);
GaugeLinkField U(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Uds, U, mu);
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uds, U, mu + 4);
}
}
inline void InsertForce4D(GaugeField &mat,
FermionField &Btilde,
FermionField &A,
int mu) {
GaugeLinkField link(mat._grid);
link = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
PokeIndex<LorentzIndex>(mat, link, mu);
}
inline void InsertForce5D(GaugeField &mat,
FermionField &Btilde,
FermionField &Atilde,
int mu) {
int Ls = Btilde._grid->_fdimensions[0];
GaugeLinkField tmp(mat._grid);
tmp = zero;
PARALLEL_FOR_LOOP
for (int sss = 0; sss < tmp._grid->oSites(); sss++) {
int sU = sss;
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * sU;
tmp[sU] = tmp[sU] + traceIndex<SpinIndex>(outerProduct(
Btilde[sF], Atilde[sF])); // ordering here
}
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
}
};
///////
// Single flavour four spinors with colour index, 5d redblack
///////
template <class S, int Nrepresentation = Nc>
class DomainWallRedBlack5dImpl
: public PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
public:
static const int Dimension = Nrepresentation;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype>
using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
template <typename vtype>
using iImplHalfSpinor =
iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
template <typename vtype>
using iImplDoubledGaugeField =
iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>;
template <typename vtype>
using iImplGaugeField =
iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef Lattice<SiteSpinor> FermionField;
// Make the doubled gauge field a *scalar*
typedef iImplDoubledGaugeField<typename Simd::scalar_type>
SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type>
SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type>
SiteScalarGaugeLink; // scalar
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
ImplParams Params;
DomainWallRedBlack5dImpl(const ImplParams &p = ImplParams()) : Params(p){};
bool overlapCommsCompute(void) { return false; };
template <class ref>
inline void loadLinkElement(Simd &reg, ref &memory) {
vsplat(reg, memory);
}
inline void multLink(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
StencilImpl &St) {
SiteGaugeLink UU;
for (int i = 0; i < Nrepresentation; i++) {
for (int j = 0; j < Nrepresentation; j++) {
vsplat(UU()()(i, j), U(mu)()(i, j));
}
}
mult(&phi(), &UU(), &chi());
}
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,
const GaugeField &Umu) {
SiteScalarGaugeField ScalarUmu;
SiteDoubledGaugeField ScalarUds;
GaugeLinkField U(Umu._grid);
GaugeField Uadj(Umu._grid);
for (int mu = 0; mu < Nd; mu++) {
U = PeekIndex<LorentzIndex>(Umu, mu);
U = adj(Cshift(U, mu, -1));
PokeIndex<LorentzIndex>(Uadj, U, mu);
}
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
std::vector<int> lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUmu, Umu, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu) = ScalarUmu(mu);
peekLocalSite(ScalarUmu, Uadj, lcoor);
for (int mu = 0; mu < 4; mu++) ScalarUds(mu + 4) = ScalarUmu(mu);
pokeLocalSite(ScalarUds, Uds, lcoor);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,
FermionField &A, int mu) {
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde,
FermionField &Atilde, int mu) {
assert(0);
}
};
////////////////////////////////////////////////////////////////////////////////////////
// Flavour doubled spinors; is Gparity the only? what about C*?
////////////////////////////////////////////////////////////////////////////////////////
template <class S, int Nrepresentation>
class GparityWilsonImpl
: public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
public:
static const int Dimension = Nrepresentation;
typedef ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype>
using iImplSpinor =
iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype>
using iImplHalfSpinor =
iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
template <typename vtype>
using iImplDoubledGaugeField =
iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
typedef GparityWilsonImplParams ImplParams;
ImplParams Params;
GparityWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){};
bool overlapCommsCompute(void) { return Params.overlapCommsCompute; };
// provide the multiply by link that is differentiated between Gparity (with
// flavour index) and non-Gparity
inline void multLink(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
StencilImpl &St) {
typedef SiteHalfSpinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
vobj vtmp;
sobj stmp;
GridBase *grid = St._grid;
const int Nsimd = grid->Nsimd();
int direction = St._directions[mu];
int distance = St._distances[mu];
int ptype = St._permute_type[mu];
int sl = St._grid->_simd_layout[direction];
// Fixme X.Y.Z.T hardcode in stencil
int mmu = mu % Nd;
// assert our assumptions
assert((distance == 1) ||
(distance == -1)); // nearest neighbour stencil hard code
assert((sl == 1) || (sl == 2));
std::vector<int> icoor;
if (SE->_around_the_world && Params.twists[mmu]) {
if (sl == 2) {
std::vector<sobj> vals(Nsimd);
extract(chi, vals);
for (int s = 0; s < Nsimd; s++) {
grid->iCoorFromIindex(icoor, s);
assert((icoor[direction] == 0) || (icoor[direction] == 1));
int permute_lane;
if (distance == 1) {
permute_lane = icoor[direction] ? 1 : 0;
} else {
permute_lane = icoor[direction] ? 0 : 1;
}
if (permute_lane) {
stmp(0) = vals[s](1);
stmp(1) = vals[s](0);
vals[s] = stmp;
}
}
merge(vtmp, vals);
} else {
vtmp(0) = chi(1);
vtmp(1) = chi(0);
}
mult(&phi(0), &U(0)(mu), &vtmp(0));
mult(&phi(1), &U(1)(mu), &vtmp(1));
} else {
mult(&phi(0), &U(0)(mu), &chi(0));
mult(&phi(1), &U(1)(mu), &chi(1));
}
}
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,
const GaugeField &Umu) {
conformable(Uds._grid, GaugeGrid);
conformable(Umu._grid, GaugeGrid);
GaugeLinkField Utmp(GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField Uconj(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) {
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
Uconj = conjugate(U);
// This phase could come from a simple bc 1,1,-1,1 ..
int neglink = GaugeGrid->GlobalDimensions()[mu] - 1;
if (Params.twists[mu]) {
Uconj = where(coor == neglink, -Uconj, Uconj);
}
PARALLEL_FOR_LOOP
for (auto ss = U.begin(); ss < U.end(); ss++) {
Uds[ss](0)(mu) = U[ss]();
Uds[ss](1)(mu) = Uconj[ss]();
}
U = adj(Cshift(U, mu, -1)); // correct except for spanning the boundary
Uconj = adj(Cshift(Uconj, mu, -1));
Utmp = U;
if (Params.twists[mu]) {
Utmp = where(coor == 0, Uconj, Utmp);
}
PARALLEL_FOR_LOOP
for (auto ss = U.begin(); ss < U.end(); ss++) {
Uds[ss](0)(mu + 4) = Utmp[ss]();
}
Utmp = Uconj;
if (Params.twists[mu]) {
Utmp = where(coor == 0, U, Utmp);
}
PARALLEL_FOR_LOOP
for (auto ss = U.begin(); ss < U.end(); ss++) {
Uds[ss](1)(mu + 4) = Utmp[ss]();
}
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,
FermionField &A, int mu) {
// DhopDir provides U or Uconj depending on coor/flavour.
GaugeLinkField link(mat._grid);
// use lorentz for flavour as hack.
auto tmp = TraceIndex<SpinIndex>(outerProduct(Btilde, A));
PARALLEL_FOR_LOOP
for (auto ss = tmp.begin(); ss < tmp.end(); ss++) {
link[ss]() = tmp[ss](0, 0) - conjugate(tmp[ss](1, 1));
}
PokeIndex<LorentzIndex>(mat, link, mu);
return;
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde,
FermionField &Atilde, int mu) {
int Ls = Btilde._grid->_fdimensions[0];
GaugeLinkField tmp(mat._grid);
tmp = zero;
PARALLEL_FOR_LOOP
for (int ss = 0; ss < tmp._grid->oSites(); ss++) {
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde[sF], Atilde[sF]));
tmp[ss]() = tmp[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
}
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
};
typedef WilsonImpl<vComplex, FundamentalRepresentation> WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation> WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation> WilsonImplD; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation > WilsonAdjImplD; // Double
typedef DomainWallRedBlack5dImpl<vComplex, Nc>
DomainWallRedBlack5dImplR; // Real.. whichever prec
typedef DomainWallRedBlack5dImpl<vComplexF, Nc>
DomainWallRedBlack5dImplF; // Float
typedef DomainWallRedBlack5dImpl<vComplexD, Nc>
DomainWallRedBlack5dImplD; // Double
typedef GparityWilsonImpl<vComplex, Nc>
GparityWilsonImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc> GparityWilsonImplD; // Double
}
}
#endif