mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 09:45:36 +00:00
275 lines
11 KiB
C++
275 lines
11 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Hadrons/Modules/MNPR/FourQuark.hpp
|
|
|
|
Copyright (C) 2015-2019
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: Julia Kettle J.R.Kettle-2@sms.ed.ac.uk
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef Hadrons_FourQuark_hpp_
|
|
#define Hadrons_FourQuark_hpp_
|
|
|
|
#include <typeinfo>
|
|
#include <Hadrons/Global.hpp>
|
|
#include <Hadrons/Module.hpp>
|
|
#include <Hadrons/ModuleFactory.hpp>
|
|
#include <Grid/serialisation/Serialisation.h>
|
|
BEGIN_HADRONS_NAMESPACE
|
|
|
|
/******************************************************************************
|
|
* TFourQuark *
|
|
Performs fourquark contractions of the type tr[g5*adj(Sout)*g5*G*Sin]
|
|
Suitable for non exceptional momenta
|
|
******************************************************************************/
|
|
BEGIN_MODULE_NAMESPACE(MNPR)
|
|
|
|
class FourQuarkPar: Serializable
|
|
{
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(FourQuarkPar,
|
|
std::string, Sin, //need to make this a propogator type?
|
|
std::string, Sout, //same
|
|
std::string, pin,
|
|
std::string, pout,
|
|
bool, fullbasis,
|
|
std::string, output);
|
|
};
|
|
|
|
template <typename FImpl1, typename FImpl2>
|
|
class TFourQuark: public Module<FourQuarkPar>
|
|
{
|
|
public:
|
|
FERM_TYPE_ALIASES(FImpl1, 1);
|
|
FERM_TYPE_ALIASES(FImpl2, 2);
|
|
class Result: Serializable
|
|
{
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
|
|
std::vector<SpinColourSpinColourMatrix>, fourquark);
|
|
};
|
|
public:
|
|
// constructor
|
|
TFourQuark(const std::string name);
|
|
// destructor
|
|
virtual ~TFourQuark(void) {};
|
|
// dependencies/products
|
|
virtual std::vector<std::string> getInput(void);
|
|
virtual std::vector<std::string> getOutput(void);
|
|
// setup
|
|
virtual void tensorprod(LatticeSpinColourSpinColourMatrix &lret, LatticeSpinColourMatrix a, LatticeSpinColourMatrix b);
|
|
virtual void setup(void);
|
|
// execution
|
|
virtual void execute(void);
|
|
};
|
|
|
|
MODULE_REGISTER_TMP(FourQuark, ARG(TFourQuark<FIMPL, FIMPL>), MNPR);
|
|
|
|
/******************************************************************************
|
|
* TFourQuark implementation *
|
|
******************************************************************************/
|
|
// constructor /////////////////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
TFourQuark<FImpl1, FImpl2>::TFourQuark(const std::string name)
|
|
: Module<FourQuarkPar>(name)
|
|
{}
|
|
|
|
// dependencies/products ///////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
std::vector<std::string> TFourQuark<FImpl1, FImpl2>::getInput(void)
|
|
{
|
|
std::vector<std::string> input = {par().Sin, par().Sout};
|
|
|
|
return input;
|
|
}
|
|
|
|
template <typename FImpl1, typename FImpl2>
|
|
std::vector<std::string> TFourQuark<FImpl1, FImpl2>::getOutput(void)
|
|
{
|
|
std::vector<std::string> output = {getName()};
|
|
|
|
return output;
|
|
}
|
|
|
|
|
|
template <typename FImpl1, typename FImpl2>
|
|
void TFourQuark<FImpl1, FImpl2>::tensorprod(LatticeSpinColourSpinColourMatrix &lret, LatticeSpinColourMatrix a, LatticeSpinColourMatrix b)
|
|
{
|
|
#if 0
|
|
parallel_for(auto site=lret.begin();site<lret.end();site++) {
|
|
for (int si; si < 4; ++si){
|
|
for(int sj; sj <4; ++sj){
|
|
for (int ci; ci < 3; ++ci){
|
|
for (int cj; cj < 3; ++cj){
|
|
for (int sk; sk < 4; ++sk){
|
|
for(int sl; sl <4; ++sl){
|
|
for (int ck; ck < 3; ++ck){
|
|
for (int cl; cl < 3; ++cl){
|
|
lret[site]()(si,sj)(ci,cj)(sk,sl)(ck,cl)=a[site]()(si,sj)(ci,cj)*b[site]()(sk,sl)(ck,cl);
|
|
}}
|
|
}}
|
|
}}
|
|
}}
|
|
}
|
|
#else
|
|
// FIXME ; is there a general need for this construct ? In which case we should encapsulate the
|
|
// below loops in a helper function.
|
|
//LOG(Message) << "sp co mat a is - " << a << std::endl;
|
|
//LOG(Message) << "sp co mat b is - " << b << std::endl;
|
|
parallel_for(auto site=lret.begin();site<lret.end();site++) {
|
|
vTComplex left;
|
|
for(int si=0; si < Ns; ++si){
|
|
for(int sj=0; sj < Ns; ++sj){
|
|
for (int ci=0; ci < Nc; ++ci){
|
|
for (int cj=0; cj < Nc; ++cj){
|
|
//LOG(Message) << "si, sj, ci, cj - " << si << ", " << sj << ", "<< ci << ", "<< cj << std::endl;
|
|
left()()() = a[site]()(si,sj)(ci,cj);
|
|
//LOG(Message) << left << std::endl;
|
|
lret[site]()(si,sj)(ci,cj)=left()*b[site]();
|
|
}}
|
|
}}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// setup ///////////////////////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
void TFourQuark<FImpl1, FImpl2>::setup(void)
|
|
{
|
|
envCreateLat(LatticeSpinColourMatrix, getName());
|
|
}
|
|
|
|
// execution ///////////////////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
void TFourQuark<FImpl1, FImpl2>::execute(void)
|
|
{
|
|
|
|
/*********************************************************************************
|
|
|
|
TFourQuark : Creates the four quark vertex required for the NPR of four-quark ops
|
|
|
|
V_{Gamma_1,Gamma_2} = sum_x [ ( g5 * adj(S'(x,p2)) * g5 * G1 * S'(x,p1) )_ci,cj;si,sj x ( g5 * adj(S'(x,p2)) * g5 * G2 S'(x,p1) )_ck,cl;sk,cl ]
|
|
|
|
Create a bilinear vertex for G1 and G2 the spin and colour indices are kept free. Where there are 16 potential Gs.
|
|
We then find the outer product of V1 and V2, keeping the spin and colour indices uncontracted
|
|
Then this is summed over the lattice coordinate
|
|
Result is a SpinColourSpinColourMatrix - with 4 colour and 4 spin indices.
|
|
We have up to 256 of these including the offdiag (G1 != G2).
|
|
|
|
\ /
|
|
\p1 p1/
|
|
\ /
|
|
\ /
|
|
G1 * * G2
|
|
/ \
|
|
/ \
|
|
/p2 p2\
|
|
/ \
|
|
|
|
*********************************************************************************/
|
|
|
|
|
|
|
|
|
|
LOG(Message) << "Computing fourquark contractions '" << getName() << "' using"
|
|
<< " momentum '" << par().Sin << "' and '" << par().Sout << "'"
|
|
<< std::endl;
|
|
|
|
BinaryWriter writer(par().output);
|
|
|
|
PropagatorField1 &Sin = *env().template getObject<PropagatorField1>(par().Sin);
|
|
PropagatorField2 &Sout = *env().template getObject<PropagatorField2>(par().Sout);
|
|
std::vector<Real> pin = strToVec<Real>(par().pin), pout = strToVec<Real>(par().pout);
|
|
bool fullbasis = par().fullbasis;
|
|
Gamma g5(Gamma::Algebra::Gamma5);
|
|
Result result;
|
|
std::vector<Real> latt_size(pin.begin(), pin.end());
|
|
LatticeComplex pdotxin(env().getGrid()), pdotxout(env().getGrid()), coor(env().getGrid());
|
|
LatticeSpinColourMatrix bilinear_mu(env().getGrid()), bilinear_nu(env().getGrid());
|
|
LatticeSpinColourSpinColourMatrix lret(env().getGrid());
|
|
Complex Ci(0.0,1.0);
|
|
|
|
//Phase propagators
|
|
//Sin = Grid::QCD::PropUtils::PhaseProps(Sin,pin);
|
|
//Sout = Grid::QCD::PropUtils::PhaseProps(Sout,pout);
|
|
|
|
//find p.x for in and out so phase can be accounted for in propagators
|
|
pdotxin=zero;
|
|
pdotxout=zero;
|
|
for (unsigned int mu = 0; mu < 4; ++mu)
|
|
{
|
|
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
LatticeCoordinate(coor,mu);
|
|
pdotxin = pdotxin +(TwoPiL * pin[mu]) * coor;
|
|
pdotxout= pdotxout +(TwoPiL * pout[mu]) * coor;
|
|
}
|
|
Sin = Sin*exp(-Ci*pdotxin); //phase corrections
|
|
Sout = Sout*exp(-Ci*pdotxout);
|
|
|
|
|
|
//Set up Gammas
|
|
std::vector<Gamma> gammavector;
|
|
for( int i=1; i<Gamma::nGamma; i+=2){
|
|
Gamma::Algebra gam = i;
|
|
gammavector.push_back(Gamma(gam));
|
|
}
|
|
|
|
lret = zero;
|
|
if (fullbasis == true){ // all combinations of mu and nu
|
|
result.fourquark.resize(Gamma::nGamma/2*Gamma::nGamma/2);
|
|
for( int mu=0; mu<Gamma::nGamma/2; mu++){
|
|
bilinear_mu = g5*adj(Sout)*g5*gammavector[mu]*Sin;
|
|
for ( int nu=0; nu<Gamma::nGamma; nu++){
|
|
LatticeSpinColourMatrix bilinear_nu(env().getGrid());
|
|
bilinear_nu = g5*adj(Sout)*g5*gammavector[nu]*Sin;
|
|
LOG(Message) << "bilinear_nu for nu = " << nu << " is - " << bilinear_mu << std::endl;
|
|
result.fourquark[mu*Gamma::nGamma/2 + nu] = zero;
|
|
tensorprod(lret,bilinear_mu,bilinear_nu);
|
|
result.fourquark[mu*Gamma::nGamma/2 + nu] = sum(lret);
|
|
}
|
|
}
|
|
} else {
|
|
result.fourquark.resize(Gamma::nGamma/2);
|
|
for ( int mu=0; mu<1; mu++){
|
|
//for( int mu=0; mu<Gamma::nGamma/2; mu++ ){
|
|
bilinear_mu = g5*adj(Sout)*g5*gammavector[mu]*Sin;
|
|
//LOG(Message) << "bilinear_mu for mu = " << mu << " is - " << bilinear_mu << std::endl;
|
|
result.fourquark[mu] = zero;
|
|
tensorprod(lret,bilinear_mu,bilinear_mu); //tensor outer product
|
|
result.fourquark[mu] = sum(lret);
|
|
}
|
|
}
|
|
write(writer, "fourquark", result.fourquark);
|
|
}
|
|
|
|
END_MODULE_NAMESPACE
|
|
|
|
END_HADRONS_NAMESPACE
|
|
|
|
#endif // Hadrons_FourQuark_hpp_
|