1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/Hadrons/Modules/MDistil/LapEvec.hpp
Michael Marshall 18177d9709 Review changes
2019-11-18 11:59:13 +00:00

328 lines
13 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/LapEvec.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_LapEvec_hpp_
#define Hadrons_MDistil_LapEvec_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
Laplacian eigenvectors - parameters
Computes the eigenvectors of the 3D-Laplacian, built from stout-smeared
gauge links with the specified number of steps and smearing parameter rho.
The smearing is only applied to the spatial components of the gauge field,
i.e. rho_{4i} = rho_{i4} = rho_{44} = 0.
Chebyshev-preconditioning is needed for convergence of the nvec lowest
eigenvectors.
******************************************************************************/
struct StoutParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(StoutParameters,
int, steps,
double, rho)
StoutParameters() = default;
template <class ReaderClass> StoutParameters(Reader<ReaderClass>& Reader){read(Reader,"StoutSmearing",*this);}
};
struct ChebyshevParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyshevParameters,
int, PolyOrder,
double, alpha,
double, beta)
ChebyshevParameters() = default;
template <class ReaderClass> ChebyshevParameters(Reader<ReaderClass>& Reader){read(Reader,"Chebyshev",*this);}
};
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
int, Nvec,
int, Nk,
int, Np,
int, MaxIt,
double, resid,
int, IRLLog)
LanczosParameters() = default;
template <class ReaderClass> LanczosParameters(Reader<ReaderClass>& Reader){read(Reader,"Lanczos",*this);}
};
// These are the actual parameters passed to the module during construction
struct LapEvecPar: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LapEvecPar
,std::string, gauge
,StoutParameters, Stout
,ChebyshevParameters, Cheby
,LanczosParameters, Lanczos)
};
/******************************************************************************
Laplacian eigenvectors - Module (class) definition
******************************************************************************/
template <typename GImpl>
class TLapEvec: public Module<LapEvecPar>
{
public:
GAUGE_TYPE_ALIASES(GImpl,);
// constructor
TLapEvec(const std::string name);
// destructor
virtual ~TLapEvec(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
std::unique_ptr<GridCartesian> gridLD; // Owned by me, so I must delete it
};
MODULE_REGISTER_TMP(LapEvec, TLapEvec<GIMPL>, MDistil);
/******************************************************************************
TLapEvec implementation
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename GImpl>
TLapEvec<GImpl>::TLapEvec(const std::string name) : Module<LapEvecPar>(name) {}
// dependencies/products ///////////////////////////////////////////////////////
template <typename GImpl>
std::vector<std::string> TLapEvec<GImpl>::getInput(void)
{
return std::vector<std::string>{par().gauge};
}
template <typename GImpl>
std::vector<std::string> TLapEvec<GImpl>::getOutput(void)
{
return {getName()}; // This is the higher dimensional eigenpack
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename GImpl>
void TLapEvec<GImpl>::setup(void)
{
GridCartesian * gridHD = env().getGrid();
MakeLowerDimGrid(gridLD,gridHD);
const int Ntlocal{gridHD->LocalDimensions()[Tdir]};
// Temporaries
envTmpLat(GaugeField, "Umu_stout");
envTmpLat(GaugeField, "Umu_smear");
envTmp(LatticeGaugeField, "UmuNoTime",1,LatticeGaugeField(gridLD.get()));
envTmp(LatticeColourVector, "src",1,LatticeColourVector(gridLD.get()));
envTmp(std::vector<LapEvecs>, "eig",1,std::vector<LapEvecs>(Ntlocal));
// Output objects
envCreate(LapEvecs, getName(), 1, par().Lanczos.Nvec, gridHD);
}
/*************************************************************************************
-Grad^2 (Peardon, 2009, pg 2, equation 3, https://arxiv.org/abs/0905.2160)
Field Type of field the operator will be applied to
GaugeField Gauge field the operator will smear using
*************************************************************************************/
template<typename Field, typename GaugeField=LatticeGaugeField>
class Laplacian3D : public LinearOperatorBase<Field>, public LinearFunction<Field> {
typedef typename GaugeField::vector_type vCoeff_t;
public:
int nd; // number of spatial dimensions
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
// Construct this operator given a gauge field and the number of dimensions it should act on
Laplacian3D( GaugeField& gf, int dimSpatial = Tdir ) : nd{dimSpatial}
{
if (dimSpatial<1)
{
HADRONS_ERROR(Range,"Must be at least one spatial dimension");
}
for (int mu = 0 ; mu < nd ; mu++)
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
}
// Apply this operator to "in", return result in "out"
void operator()(const Field& in, Field& out) {
if (nd > in.Grid()->Nd())
{
HADRONS_ERROR(Range,"nd too large");
}
conformable( in, out );
out = ( ( Real ) ( 2 * nd ) ) * in;
Field tmp_(in.Grid());
typedef typename GaugeField::vector_type vCoeff_t;
for (int mu = 0 ; mu < nd ; mu++)
{
out -= U[mu] * Cshift( in, mu, 1);
tmp_ = adj( U[mu] ) * in;
out -= Cshift(tmp_,mu,-1);
}
}
void OpDiag (const Field &in, Field &out) { HADRONS_ERROR(Definition, "OpDiag() undefined"); };
void OpDir (const Field &in, Field &out,int dir,int disp) { HADRONS_ERROR(Definition, "OpDir() undefined"); };
void Op (const Field &in, Field &out) { HADRONS_ERROR(Definition, "Op() undefined"); };
void AdjOp (const Field &in, Field &out) { HADRONS_ERROR(Definition, "AdjOp() undefined"); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) { HADRONS_ERROR(Definition, "HermOpAndNorm() undefined"); };
void HermOp(const Field &in, Field &out) { operator()(in,out); };
};
template<typename Field>
class Laplacian3DHerm : public LinearFunction<Field> {
public:
OperatorFunction<Field> & poly_;
LinearOperatorBase<Field> &Linop_;
Laplacian3DHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: poly_{poly}, Linop_{linop} {}
void operator()(const Field& in, Field& out)
{
poly_(Linop_,in,out);
}
};
/******************************************************************************
Calculate low-mode eigenvalues of the Laplacian
******************************************************************************/
// execution ///////////////////////////////////////////////////////////////////
template <typename GImpl>
void TLapEvec<GImpl>::execute(void)
{
const ChebyshevParameters &ChebPar{par().Cheby};
const LanczosParameters &LPar{par().Lanczos};
// Disable IRL logging if requested
LOG(Message) << "IRLLog=" << LPar.IRLLog << std::endl;
const int PreviousIRLLogState{GridLogIRL.isActive()};
GridLogIRL.Active( LPar.IRLLog == 0 ? 0 : 1 );
// Stout smearing
envGetTmp(GaugeField, Umu_smear);
Umu_smear = envGet(GaugeField, par().gauge); // The smeared field starts off as the Gauge field
LOG(Message) << "Initial plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu_smear) << std::endl;
const StoutParameters &Stout{par().Stout};
if( Stout.steps )
{
envGetTmp(GaugeField, Umu_stout);
Smear_Stout<PeriodicGimplR> LS(Stout.rho, Tdir); // spatial smearing only
for (int i = 0; i < Stout.steps; i++) {
LS.smear(Umu_stout, Umu_smear);
Umu_smear = Umu_stout;
}
LOG(Message) << "Smeared plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu_smear) << std::endl;
}
////////////////////////////////////////////////////////////////////////
// Invert nabla operator separately on each time-slice
////////////////////////////////////////////////////////////////////////
auto & eig4d = envGet(LapEvecs, getName() );
envGetTmp(std::vector<LapEvecs>, eig); // Eigenpack for each timeslice
envGetTmp(LatticeGaugeField, UmuNoTime); // Gauge field without time dimension
envGetTmp(LatticeColourVector, src);
GridCartesian * gridHD = env().getGrid();
const int Ntlocal{gridHD->LocalDimensions()[Tdir]};
const int Ntfirst{gridHD->LocalStarts()[Tdir]};
uint32_t ConvergenceErrors{0};
for (int t = 0; t < Ntlocal; t++ )
{
LOG(Message) << "------------------------------------------------------------" << std::endl;
LOG(Message) << " Compute eigenpack, local timeslice = " << t << " / " << Ntlocal << std::endl;
LOG(Message) << "------------------------------------------------------------" << std::endl;
eig[t].resize(LPar.Nk+LPar.Np,gridLD.get());
// Construct smearing operator
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t,Tdir); // switch to 3d/4d objects
Laplacian3D<LatticeColourVector> Nabla(UmuNoTime);
LOG(Message) << "Chebyshev preconditioning to order " << ChebPar.PolyOrder
<< " with parameters (alpha,beta) = (" << ChebPar.alpha << "," << ChebPar.beta << ")" << std::endl;
Chebyshev<LatticeColourVector> Cheb(ChebPar.alpha,ChebPar.beta,ChebPar.PolyOrder);
// Construct source vector according to Test_dwf_compressed_lanczos.cc
src = 11.0; // NB: This is a dummy parameter and just needs to be non-zero
RealD nn = norm2(src);
nn = Grid::sqrt(nn);
src = src * (1.0/nn);
Laplacian3DHerm<LatticeColourVector> NablaCheby(Cheb,Nabla);
ImplicitlyRestartedLanczos<LatticeColourVector>
IRL(NablaCheby,Nabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
int Nconv = 0;
IRL.calc(eig[t].eval,eig[t].evec,src,Nconv);
if (Nconv < LPar.Nvec)
{
// NB: Can't assert here since we are processing local slices - i.e. not all nodes would assert
ConvergenceErrors = 1;
LOG(Error) << "MDistil::LapEvec : Not enough eigenvectors converged. If this occurs in practice, we should modify the eigensolver to iterate once more to ensure the second convergence test does not take us below the requested number of eigenvectors" << std::endl;
}
if( Nconv != LPar.Nvec )
eig[t].resize(LPar.Nvec, gridLD.get());
RotateEigen( eig[t].evec ); // Rotate the eigenvectors into our phase convention
for (int i=0;i<LPar.Nvec;i++){
InsertSliceLocal(eig[t].evec[i],eig4d.evec[i],0,t,Tdir);
if(t==0 && Ntfirst==0)
eig4d.eval[i] = eig[t].eval[i]; // TODO: Discuss: is this needed? Is there a better way?
}
}
GridLogIRL.Active( PreviousIRLLogState );
gridHD->GlobalSum(ConvergenceErrors);
if(ConvergenceErrors!=0)
{
HADRONS_ERROR(Program,"The eingensolver failed to find enough eigenvectors on at least one node");
}
#if DEBUG
// Now write out the 4d eigenvectors
eig4d.record.operatorXml = "<OPERATOR>Distillation</OPERATOR>";
eig4d.record.solverXml = "<SOLVER>CG</SOLVER>";
std::string sEigenPackName(getName());
sEigenPackName.append(".");
sEigenPackName.append(std::to_string(vm().getTrajectory()));
eig4d.write(sEigenPackName,false);
#endif
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_LapEvec_hpp_