1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00
Grid/tests/debug/Test_general_coarse_hdcg_phys.cc
2024-04-01 14:18:40 -04:00

445 lines
15 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
using namespace std;
using namespace Grid;
template<class Coarsened>
void SaveOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Operator.Grid()->IsBoss());
assert(Operator._A.size()==Operator.geom.npoint);
WR.open(file);
for(int p=0;p<Operator._A.size();p++){
auto tmp = Operator.Cell.Extract(Operator._A[p]);
WR.writeScidacFieldRecord(tmp,record,0,0);
// WR.writeScidacFieldRecord(tmp,record,0,BINARYIO_LEXICOGRAPHIC);
}
WR.close();
#endif
}
template<class Coarsened>
void LoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
// RD.readScidacFieldRecord(Operator._A[p],record,BINARYIO_LEXICOGRAPHIC);
RD.readScidacFieldRecord(Operator._A[p],record,0);
}
RD.close();
Operator.ExchangeCoarseLinks();
#endif
}
template<class Coarsened>
void ReLoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
auto tmp=Operator.Cell.Extract(Operator._A[p]);
RD.readScidacFieldRecord(tmp,record,0);
Operator._A[p] = Operator.Cell.ExchangePeriodic(tmp);
}
RD.close();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
//WR.writeScidacFieldRecord(Agg.subspace[b],record,0,BINARYIO_LEXICOGRAPHIC);
WR.writeScidacFieldRecord(Agg.subspace[b],record,0,0);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
// RD.readScidacFieldRecord(Agg.subspace[b],record,BINARYIO_LEXICOGRAPHIC);
RD.readScidacFieldRecord(Agg.subspace[b],record,0);
}
RD.close();
#endif
}
RealD InverseApproximation(RealD x){
return 1.0/x;
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
/*
template<class Field> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
tmp = in;
Cheby(_SmootherOperator,tmp,out);
}
};
*/
template<class Field> class CGSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
int iters;
CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
iters(_iters)
{
std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
};
void operator() (const Field &in, Field &out)
{
ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
CG(_SmootherOperator,in,out);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
const int nbasis = 62;
const int cb = 0 ;
RealD mass=0.00078;
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,6,4});
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/Block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
// Run power method on FineHermOp
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
NearestStencilGeometry5D geom_nn(Coarse5d);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
std::string subspace_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.phys48.rat.scidac.62");
std::string refine_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Refine.phys48.rat.scidac.62");
std::string ldop_file("/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.phys48.rat.scidac.62");
bool load_agg=true;
bool load_refine=true;
bool load_mat=true;
if ( load_agg ) {
LoadBasis(Aggregates,subspace_file);
} else {
// NBASIS=40
// Best so far: ord 2000 [0.01,95], 500,500 -- 466 iters
// slurm-398626.out:Grid : Message : 141.295253 s : 500 filt [1] <n|MdagM|n> 0.000103622063
//Grid : Message : 33.870465 s : Chebyshev subspace pass-1 : ord 2000 [0.001,95]
//Grid : Message : 33.870485 s : Chebyshev subspace pass-2 : nbasis40 min 1000 step 1000 lo0
//slurm-1482200.out : filt ~ 0.004 -- not as low mode projecting -- took 626 iters
// To try: 2000 [0.1,95] ,2000,500,500 -- slurm-1482213.out 586 iterations
// To try: 2000 [0.01,95] ,2000,500,500 -- 469 (think I bumped 92 to 95) (??)
// To try: 2000 [0.025,95],2000,500,500
// To try: 2000 [0.005,95],2000,500,500
// NBASIS=44 -- HDCG paper was 64 vectors; AMD compiler craps out at 48
// To try: 2000 [0.01,95] ,2000,500,500 -- 419 lowest slurm-1482355.out
// To try: 2000 [0.025,95] ,2000,500,500 -- 487
// To try: 2000 [0.005,95] ,2000,500,500
/*
Smoother [3,92] order 16
slurm-1482355.out:Grid : Message : 35.239686 s : Chebyshev subspace pass-1 : ord 2000 [0.01,95]
slurm-1482355.out:Grid : Message : 35.239714 s : Chebyshev subspace pass-2 : nbasis44 min 500 step 500 lo0
slurm-1482355.out:Grid : Message : 5561.305552 s : HDCG: Pcg converged in 419 iterations and 2616.202598 s
slurm-1482367.out:Grid : Message : 43.157235 s : Chebyshev subspace pass-1 : ord 2000 [0.025,95]
slurm-1482367.out:Grid : Message : 43.157257 s : Chebyshev subspace pass-2 : nbasis44 min 500 step 500 lo0
slurm-1482367.out:Grid : Message : 6169.469330 s : HDCG: Pcg converged in 487 iterations and 3131.185821 s
*/
/*
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.0075,
2500,
500,
500,
0.0);
*/
/*
Aggregates.CreateSubspaceChebyshevPowerLaw(RNG5,HermOpEO,nbasis,
95.0,
2000);
*/
Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
0.0003,1.0e-5,2000); // Lo, tol, maxit
/*
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.05,
2000,
500,
500,
0.0);
*/
/*
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.01,
2000,
500,
500,
0.0);
*/
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); -- running slurm-1484934.out nbasis 56
// Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500); <== last run
SaveBasis(Aggregates,subspace_file);
}
int refine=1;
if(refine){
if ( load_refine ) {
LoadBasis(Aggregates,refine_file);
} else {
// HDCG used Pcg to refine
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000);
SaveBasis(Aggregates,refine_file);
}
}
Aggregates.Orthogonalise();
if ( load_mat ) {
LoadOperator(LittleDiracOp,ldop_file);
} else {
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
SaveOperator(LittleDiracOp,ldop_file);
}
// I/O test:
CoarseVector c_src(Coarse5d); random(CRNG,c_src);
CoarseVector c_res(Coarse5d);
CoarseVector c_ref(Coarse5d);
//////////////////////////////////////////
// Build a coarse lanczos
//////////////////////////////////////////
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
HermMatrix CoarseOp (LittleDiracOp);
int Nk=192;
int Nm=256;
int Nstop=Nk;
Chebyshev<CoarseVector> IRLCheby(0.005,40.0,201);
// Chebyshev<CoarseVector> IRLCheby(0.010,45.0,201); // 1 iter
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1e-5,10);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
IRL.calc(eval,evec,c_src,Nconv);
//////////////////////////////////////////
// Deflated guesser
//////////////////////////////////////////
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
int maxit=30000;
ConjugateGradient<CoarseVector> CG(1.0e-10,maxit,false);
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
//////////////////////////////////////////
// HDCG
//////////////////////////////////////////
std::vector<RealD> los({2.0,2.5}); // Nbasis 40 == 36,36 iters
std::vector<int> ords({9}); // Nbasis 40 == 40 iters (320 mults)
for(int l=0;l<los.size();l++){
RealD lo = los[l];
for(int o=0;o<ords.size();o++){
//////////////////////////////////////////
// Sloppy coarse solve
//////////////////////////////////////////
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
//////////////////////////////////////////
// IRS shifted smoother based on CG
//////////////////////////////////////////
RealD MirsShift = lo;
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
CGSmoother<LatticeFermionD> CGsmooth(ords[o],ShiftedFineHermOp) ;
//////////////////////////////////////////
// Build a HDCG solver
//////////////////////////////////////////
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCG(1.0e-8, 700,
FineHermOp,
CGsmooth,
HPDSolveSloppy,
HPDSolve,
Aggregates);
result=Zero();
HDCG(src,result);
}
}
// Standard CG
result=Zero();
CGfine(HermOpEO, src, result);
Grid_finalize();
return 0;
}