1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/Hadrons/Modules/MScalar/ScalarVP.cc

565 lines
20 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MScalar/ScalarVP.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/*
* Scalar QED vacuum polarisation up to O(alpha)
*
* Conserved vector 2-point function diagram notation:
* _______
* / \
* U_nu * * U_mu
* \_______/
*
* ( adj(S(a\hat{nu}|x)) U_mu(x) S(0|x+a\hat{mu}) U_nu(0) )
* = 2 Re( - )
* ( adj(S(a\hat{nu}|x+a\hat{mu})) adj(U_mu(x)) S(0|x) U_nu(0) )
*
*
* _______
* / \
* free = 1 * * 1
* \_______/
*
*
*
* _______
* / \
* S = iA_nu * * iA_mu
* \_______/
*
*
* Delta_1
* ___*___
* / \
* X = 1 * * 1
* \___*___/
* Delta_1
*
* Delta_1 Delta_1
* ___*___ ___*___
* / \ / \
* 1 * * iA_mu + iA_nu * * 1
* \_______/ \_______/
* 4C = _______ _______
* / \ / \
* + 1 * * iA_mu + iA_nu * * 1
* \___*___/ \___*___/
* Delta_1 Delta_1
*
* Delta_1 Delta_1
* _*___*_ _______
* / \ / \
* 2E = 1 * * 1 + 1 * * 1
* \_______/ \_*___*_/
* Delta_1 Delta_1
*
* Delta_2
* ___*___ _______
* / \ / \
* 2T = 1 * * 1 + 1 * * 1
* \_______/ \___*___/
* Delta_2
*
*
* _______
* / \
* srcT = -A_nu^2/2 * * 1
* \_______/
*
*
*
* _______
* / \
* snkT = 1 * * -A_mu^2/2
* \_______/
*
* Full VP to O(alpha) = free + q^2*(S+X+4C+2E+2T+srcT+snkT)
*/
/******************************************************************************
* TScalarVP implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TScalarVP::TScalarVP(const std::string name)
: Module<ScalarVPPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TScalarVP::getInput(void)
{
prop0Name_ = par().scalarProp + "_0";
propQName_ = par().scalarProp + "_Q";
propSunName_ = par().scalarProp + "_Sun";
propTadName_ = par().scalarProp + "_Tad";
std::vector<std::string> in = {par().emField, prop0Name_, propQName_,
propSunName_, propTadName_};
return in;
}
std::vector<std::string> TScalarVP::getOutput(void)
{
std::vector<std::string> out;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
// out.push_back(getName() + "_propQ_" + std::to_string(mu));
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
out.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
}
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TScalarVP::setup(void)
{
freeMomPropName_ = FREEMOMPROP(static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().mass);
GFSrcName_ = par().scalarProp + "_DinvSrc";
fftName_ = par().scalarProp + "_fft";
phaseName_.clear();
muPropQName_.clear();
vpTensorName_.clear();
momPhaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
std::vector<std::string> vpTensorName_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
vpTensorName_mu.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
vpTensorName_.push_back(vpTensorName_mu);
}
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
}
}
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
envCreateLat(ScalarField, muPropQName_[mu]);
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
envCreateLat(ScalarField, vpTensorName_[mu][nu]);
}
}
if (!par().output.empty())
{
momPhasesDone_ = env().hasCreatedObject(momPhaseName_[0]);
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
envCacheLat(ScalarField, momPhaseName_[i_p]);
}
}
envTmpLat(ScalarField, "buf");
envTmpLat(ScalarField, "result");
envTmpLat(ScalarField, "Amu");
envTmpLat(ScalarField, "Usnk");
envTmpLat(ScalarField, "tmpProp");
}
// execution ///////////////////////////////////////////////////////////////////
void TScalarVP::execute(void)
{
// CACHING ANALYTIC EXPRESSIONS
makeCaches();
Complex ci(0.0,1.0);
Real q = static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().charge;
auto &prop0 = envGet(ScalarField, prop0Name_);
auto &propQ = envGet(ScalarField, propQName_);
auto &propSun = envGet(ScalarField, propSunName_);
auto &propTad = envGet(ScalarField, propTadName_);
auto &GFSrc = envGet(ScalarField, GFSrcName_);
auto &G = envGet(ScalarField, freeMomPropName_);
auto &fft = envGet(FFT, fftName_);
phase_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
auto &phmu = envGet(ScalarField, phaseName_[mu]);
phase_.push_back(&phmu);
}
// PROPAGATORS FROM SHIFTED SOURCES
LOG(Message) << "Computing O(q) charged scalar propagators..."
<< std::endl;
std::vector<ScalarField *> muPropQ;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
auto &propmu = envGet(ScalarField, muPropQName_[mu]);
// -G*momD1*G*F*tau_mu*Src (momD1 = F*D1*Finv)
propmu = adj(*phase_[mu])*GFSrc;
momD1(propmu, fft);
propmu = -G*propmu;
fft.FFT_all_dim(propmu, propmu, FFT::backward);
muPropQ.push_back(&propmu);
}
// CONTRACTIONS
auto &A = envGet(EmField, par().emField);
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, result);
envGetTmp(ScalarField, Amu);
envGetTmp(ScalarField, Usnk);
envGetTmp(ScalarField, tmpProp);
TComplex Anu0, Usrc;
std::vector<int> coor0 = {0, 0, 0, 0};
std::vector<std::vector<ScalarField *> > vpTensor;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
std::vector<ScalarField *> vpTensor_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
auto &vpmunu = envGet(ScalarField, vpTensorName_[mu][nu]);
vpTensor_mu.push_back(&vpmunu);
}
vpTensor.push_back(vpTensor_mu);
}
// Prepare output data structure if necessary
Result outputData;
if (!par().output.empty())
{
outputData.projection.resize(par().outputMom.size());
outputData.lattice_size = env().getGrid()->_fdimensions;
outputData.mass = static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().mass;
outputData.charge = q;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
outputData.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
outputData.projection[i_p].pi.resize(env().getNd());
outputData.projection[i_p].pi_free.resize(env().getNd());
outputData.projection[i_p].pi_2E.resize(env().getNd());
outputData.projection[i_p].pi_2T.resize(env().getNd());
outputData.projection[i_p].pi_S.resize(env().getNd());
outputData.projection[i_p].pi_4C.resize(env().getNd());
outputData.projection[i_p].pi_X.resize(env().getNd());
outputData.projection[i_p].pi_srcT.resize(env().getNd());
outputData.projection[i_p].pi_snkT.resize(env().getNd());
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
outputData.projection[i_p].pi[nu].resize(env().getNd());
outputData.projection[i_p].pi_free[nu].resize(env().getNd());
outputData.projection[i_p].pi_2E[nu].resize(env().getNd());
outputData.projection[i_p].pi_2T[nu].resize(env().getNd());
outputData.projection[i_p].pi_S[nu].resize(env().getNd());
outputData.projection[i_p].pi_4C[nu].resize(env().getNd());
outputData.projection[i_p].pi_X[nu].resize(env().getNd());
outputData.projection[i_p].pi_srcT[nu].resize(env().getNd());
outputData.projection[i_p].pi_snkT[nu].resize(env().getNd());
}
}
}
// Do contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
peekSite(Anu0, peekLorentz(A, nu), coor0);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
<< std::endl;
Amu = peekLorentz(A, mu);
// free
tmpProp = Cshift(prop0, nu, -1); // S_0(0|x-a\hat{\nu})
// = S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
vpContraction(result, prop0, tmpProp, Usrc, mu);
*vpTensor[mu][nu] = result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_free[mu][nu], result,
i_p);
}
}
tmpProp = result; // Just using tmpProp as a temporary ScalarField
// here (buf is modified by calls to writeVP())
// srcT
result = tmpProp * (-0.5)*Anu0*Anu0;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_srcT[mu][nu], result,
i_p);
}
}
// snkT
result = tmpProp * (-0.5)*Amu*Amu;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_snkT[mu][nu], result,
i_p);
}
}
// S
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = ci*Anu0;
Usnk = ci*Amu;
vpContraction(result, prop0, tmpProp, Usrc, Usnk, mu);
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_S[mu][nu], result,
i_p);
}
}
// 4C
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
Usnk = ci*Amu;
vpContraction(result, propQ, tmpProp, Usrc, Usnk, mu);
Usrc = ci*Anu0;
vpContraction(buf, propQ, tmpProp, Usrc, mu);
result += buf;
vpContraction(buf, prop0, *muPropQ[nu], Usrc, mu);
result += buf;
Usrc = Complex(1.0,0.0);
Usnk = ci*Amu;
vpContraction(buf, prop0, *muPropQ[nu], Usrc, Usnk, mu);
result += buf;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_4C[mu][nu], result,
i_p);
}
}
// X
Usrc = Complex(1.0,0.0);
vpContraction(result, propQ, *muPropQ[nu], Usrc, mu);
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_X[mu][nu], result,
i_p);
}
}
// 2E
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
vpContraction(result, propSun, tmpProp, Usrc, mu);
tmpProp = Cshift(propSun, nu, -1); // S_\Sigma(0|x-a\hat{\nu})
//(Note: <S(0|x-a\hat{\nu})> = <S(a\hat{\nu}|x)>)
vpContraction(buf, prop0, tmpProp, Usrc, mu);
result += buf;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_2E[mu][nu], result,
i_p);
}
}
// 2T
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
vpContraction(result, propTad, tmpProp, Usrc, mu);
tmpProp = Cshift(propTad, nu, -1); // S_T(0|x-a\hat{\nu})
vpContraction(buf, prop0, tmpProp, Usrc, mu);
result += buf;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_2T[mu][nu], result,
i_p);
}
}
// Do momentum projections of full VP if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi[mu][nu],
*vpTensor[mu][nu], i_p);
}
}
}
}
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
LOG(Message) << "Saving momentum-projected HVP to '"
<< RESULT_FILE_NAME(par().output) << "'..."
<< std::endl;
saveResult(par().output, "HVP", outputData);
}
}
void TScalarVP::makeCaches(void)
{
envGetTmp(ScalarField, buf);
if ( (!par().output.empty()) && (!momPhasesDone_) )
{
LOG(Message) << "Caching phases for momentum projections..."
<< std::endl;
std::vector<int> &l = env().getGrid()->_fdimensions;
Complex ci(0.0,1.0);
// Calculate phase factors
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
momph_ip = zero;
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
Real twoPiL = M_PI*2./l[j];
LatticeCoordinate(buf, j);
buf = mom[j]*twoPiL*buf;
momph_ip = momph_ip + buf;
}
momph_ip = exp(-ci*momph_ip);
momPhase_.push_back(&momph_ip);
}
}
}
void TScalarVP::vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, ScalarField &u_snk, int mu)
{
// Note: this function assumes a point source is used.
vp = adj(prop_nu_x) * u_snk * Cshift(prop_0_x, mu, 1) * u_src;
vp -= Cshift(adj(prop_nu_x), mu, 1) * adj(u_snk) * prop_0_x * u_src;
vp = 2.0*real(vp);
}
void TScalarVP::vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, int mu)
{
// Note: this function assumes a point source is used.
vp = adj(prop_nu_x) * Cshift(prop_0_x, mu, 1) * u_src;
vp -= Cshift(adj(prop_nu_x), mu, 1) * prop_0_x * u_src;
vp = 2.0*real(vp);
}
void TScalarVP::project(std::vector<Complex> &projection, const ScalarField &vp, int i_p)
{
std::vector<TComplex> vecBuf;
envGetTmp(ScalarField, buf);
buf = vp*(*momPhase_[i_p]);
sliceSum(buf, vecBuf, Tp);
projection.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
projection[t] = TensorRemove(vecBuf[t]);
}
}
void TScalarVP::momD1(ScalarField &s, FFT &fft)
{
auto &A = envGet(EmField, par().emField);
Complex ci(0.0,1.0);
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, result);
envGetTmp(ScalarField, Amu);
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result - ci*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + ci*adj(*phase_[mu])*buf;
}
s = result;
}