1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 03:05:55 +01:00
Grid/Grid/qcd/hmc/integrators/Integrator.h
Christopher Kelly 19da647e3c Added support for non-periodic gauge field implementations in the random gauge shift performed at the start of the HMC trajectory
(The above required exposing the gauge implementation to the HMC class through the Integrator class)
Made the random shift optional (default on) through a parameter in HMCparameters
Modified ConjugateBC::CshiftLink such that it supports any shift in  -L < shift < L rather than just +-1
Added a tester for the BC-respecting Cshift
Fixed a missing system header include in SSE4 intrinsics wrapper
Fixed sumD_cpu for single-prec types performing an incorrect conversion to a single-prec data type at the end, that fails to compile on some systems
2022-09-09 12:47:09 -04:00

454 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/Integrator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#ifndef INTEGRATOR_INCLUDED
#define INTEGRATOR_INCLUDED
#include <memory>
NAMESPACE_BEGIN(Grid);
class IntegratorParameters: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(IntegratorParameters,
std::string, name, // name of the integrator
unsigned int, MDsteps, // number of outer steps
RealD, trajL) // trajectory length
IntegratorParameters(int MDsteps_ = 10, RealD trajL_ = 1.0)
: MDsteps(MDsteps_),
trajL(trajL_) {};
template <class ReaderClass, typename std::enable_if<isReader<ReaderClass>::value, int >::type = 0 >
IntegratorParameters(ReaderClass & Reader)
{
std::cout << GridLogMessage << "Reading integrator\n";
read(Reader, "Integrator", *this);
}
void print_parameters() const {
std::cout << GridLogMessage << "[Integrator] Type : " << name << std::endl;
std::cout << GridLogMessage << "[Integrator] Trajectory length : " << trajL << std::endl;
std::cout << GridLogMessage << "[Integrator] Number of MD steps : " << MDsteps << std::endl;
std::cout << GridLogMessage << "[Integrator] Step size : " << trajL/MDsteps << std::endl;
}
};
/*! @brief Class for Molecular Dynamics management */
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
typedef FieldImplementation_ FieldImplementation;
typedef typename FieldImplementation::Field MomentaField; //for readability
typedef typename FieldImplementation::Field Field;
int levels; // number of integration levels
double t_U; // Track time passing on each level and for U and for P
std::vector<double> t_P;
MomentaField P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
//Filters allow the user to manipulate the conjugate momentum, for example to freeze links in DDHMC
//It is applied whenever the momentum is updated / refreshed
//The default filter does nothing
MomentumFilterBase<MomentaField> const* MomFilter;
const ActionSet<Field, RepresentationPolicy> as;
//Get a pointer to a shared static instance of the "do-nothing" momentum filter to serve as a default
static MomentumFilterBase<MomentaField> const* getDefaultMomFilter(){
static MomentumFilterNone<MomentaField> filter;
return &filter;
}
void update_P(Field& U, int level, double ep)
{
t_P[level] += ep;
update_P(P, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P " << " dt " << ep << " : t_P " << t_P[level] << std::endl;
}
// to be used by the actionlevel class to iterate
// over the representations
struct _updateP
{
template <class FieldType, class GF, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
GF& Mom, GF& U, double ep) {
for (int a = 0; a < repr_set.size(); ++a) {
FieldType forceR(U.Grid());
// Implement smearing only for the fundamental representation now
repr_set.at(a)->deriv(Rep.U, forceR);
GF force = Rep.RtoFundamentalProject(forceR); // Ta for the fundamental rep
Real force_abs = std::sqrt(norm2(force)/(U.Grid()->gSites()));
std::cout << GridLogIntegrator << "Hirep Force average: " << force_abs << std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
}
}
} update_P_hireps{};
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
for (int a = 0; a < as[level].actions.size(); ++a) {
double start_full = usecond();
Field force(U.Grid());
conformable(U.Grid(), Mom.Grid());
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond();
as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
double end_force = usecond();
// DumpSliceNorm("force ",force,Nd-1);
MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<< std::endl;
DumpSliceNorm("force filtered ",force,Nd-1);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
Real force_max = std::sqrt(maxLocalNorm2(force));
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
double end_full = usecond();
double time_full = (end_full - start_full) / 1e3;
double time_force = (end_force - start_force) / 1e3;
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void update_U(Field& U, double ep)
{
update_U(P, U, ep);
t_U += ep;
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
}
void update_U(MomentaField& Mom, Field& U, double ep)
{
MomentaField MomFiltered(Mom.Grid());
MomFiltered = Mom;
MomFilter->applyFilter(MomFiltered);
// exponential of Mom*U in the gauge fields case
FieldImplementation::update_field(MomFiltered, U, ep);
// Update the smeared fields, can be implemented as observer
Smearer.set_Field(U);
// Update the higher representations fields
Representations.update(U); // void functions if fundamental representation
}
virtual void step(Field& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
: Params(Par),
as(Aset),
P(grid),
levels(Aset.size()),
Smearer(Sm),
Representations(grid)
{
t_P.resize(levels, 0.0);
t_U = 0.0;
// initialization of smearer delegated outside of Integrator
//Default the momentum filter to "do-nothing"
MomFilter = getDefaultMomFilter();
};
virtual ~Integrator() {}
virtual std::string integrator_name() = 0;
//Set the momentum filter allowing for manipulation of the conjugate momentum
void setMomentumFilter(const MomentumFilterBase<MomentaField> &filter){
MomFilter = &filter;
}
//Access the conjugate momentum
const MomentaField & getMomentum() const{ return P; }
void reset_timer(void)
{
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
as[level].actions.at(actionID)->reset_timer();
}
}
}
void print_timer(void)
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] "
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
}
}
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force average size "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] : "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" Fdt max " << as[level].actions.at(actionID)->Fdt_max_average()
<<" Fdt norm " << as[level].actions.at(actionID)->Fdt_norm_average()
<<" calls " << as[level].actions.at(actionID)->deriv_num
<< std::endl;
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void print_parameters()
{
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
Params.print_parameters();
}
void print_actions()
{
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
std::cout << GridLogMessage << "[Integrator] Action summary: "<<std::endl;
for (int level = 0; level < as.size(); ++level) {
std::cout << GridLogMessage << "[Integrator] ---- Level: "<< level << std::endl;
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage << "["<< as[level].actions.at(actionID)->action_name() << "] ID: " << actionID << std::endl;
std::cout << as[level].actions.at(actionID)->LogParameters();
}
}
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
}
void reverse_momenta()
{
P *= -1.0;
}
// to be used by the actionlevel class to iterate
// over the representations
struct _refresh {
template <class FieldType, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, GridSerialRNG & sRNG, GridParallelRNG& pRNG) {
for (int a = 0; a < repr_set.size(); ++a){
repr_set.at(a)->refresh(Rep.U, sRNG, pRNG);
std::cout << GridLogDebug << "Hirep refreshing pseudofermions" << std::endl;
}
}
} refresh_hireps{};
// Initialization of momenta and actions
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
{
assert(P.Grid() == U.Grid());
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
FieldImplementation::generate_momenta(P, sRNG, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
// of the Metropolis
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
Smearer.set_Field(U);
// Set the (eventual) representations gauge fields
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
Representations.update(U);
// The Smearer is attached to a pointer of the gauge field
// automatically gets the correct field
// whether or not has been accepted in the previous sweep
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
auto name = as[level].actions.at(actionID)->action_name();
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop();
}
// Refresh the higher representation actions
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
}
}
// to be used by the actionlevel class to iterate
// over the representations
struct _S {
template <class FieldType, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
for (int a = 0; a < repr_set.size(); ++a) {
RealD Hterm = repr_set.at(a)->S(Rep.U);
std::cout << GridLogMessage << "S Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
H += Hterm;
}
}
} S_hireps{};
// Calculate action
RealD S(Field& U)
{ // here also U not used
std::cout << GridLogIntegrator << "Integrator action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
RealD Hterm;
// Actions
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
Hterm = as[level].actions.at(actionID)->S(Us);
as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}
as[level].apply(S_hireps, Representations, level, H);
}
return H;
}
void integrate(Field& U)
{
// reset the clocks
t_U = 0;
for (int level = 0; level < as.size(); ++level) {
t_P[level] = 0;
}
for (int stp = 0; stp < Params.MDsteps; ++stp) { // MD step
int first_step = (stp == 0);
int last_step = (stp == Params.MDsteps - 1);
this->step(U, 0, first_step, last_step);
}
// Check the clocks all match on all levels
for (int level = 0; level < as.size(); ++level) {
assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
}
FieldImplementation::Project(U);
// and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6);
}
};
NAMESPACE_END(Grid);
#endif // INTEGRATOR_INCLUDED