mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
203 lines
5.5 KiB
C++
203 lines
5.5 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/stencil/Lebesgue.cc
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Grid.h>
|
|
#include <algorithm>
|
|
|
|
namespace Grid {
|
|
|
|
int LebesgueOrder::UseLebesgueOrder;
|
|
std::vector<int> LebesgueOrder::Block({2,2,2,2});
|
|
|
|
LebesgueOrder::IndexInteger LebesgueOrder::alignup(IndexInteger n){
|
|
n--; // 1000 0011 --> 1000 0010
|
|
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
|
|
n |= n >> 2; // 1100 0011 | 0011 0000 = 1111 0011
|
|
n |= n >> 4; // 1111 0011 | 0000 1111 = 1111 1111
|
|
n |= n >> 8; // ... (At this point all bits are 1, so further bitwise-or
|
|
n |= n >> 16; // operations produce no effect.)
|
|
n++; // 1111 1111 --> 1 0000 0000
|
|
return n;
|
|
};
|
|
|
|
LebesgueOrder::LebesgueOrder(GridBase *_grid)
|
|
{
|
|
grid = _grid;
|
|
if ( Block[0]==0) ZGraph();
|
|
else CartesianBlocking();
|
|
}
|
|
|
|
void LebesgueOrder::CartesianBlocking(void)
|
|
{
|
|
_LebesgueReorder.resize(0);
|
|
|
|
std::cout << GridLogMessage << " CartesianBlocking ";
|
|
for(int d=0;d<Block.size();d++) std::cout <<Block[d]<<" ";
|
|
std::cout<<std::endl;
|
|
|
|
IndexInteger ND = grid->_ndimension;
|
|
|
|
assert(ND==4);
|
|
assert(ND==Block.size());
|
|
|
|
std::vector<IndexInteger> dims(ND);
|
|
std::vector<IndexInteger> xo(ND,0);
|
|
std::vector<IndexInteger> xi(ND,0);
|
|
|
|
for(IndexInteger mu=0;mu<ND;mu++){
|
|
dims[mu] = grid->_rdimensions[mu];
|
|
}
|
|
|
|
IterateO(ND,ND-1,xo,xi,dims);
|
|
};
|
|
|
|
void LebesgueOrder::IterateO(int ND,int dim,
|
|
std::vector<IndexInteger> & xo,
|
|
std::vector<IndexInteger> & xi,
|
|
std::vector<IndexInteger> &dims)
|
|
{
|
|
for(xo[dim]=0;xo[dim]<dims[dim];xo[dim]+=Block[dim]){
|
|
if ( dim > 0 ) {
|
|
IterateO(ND,dim-1,xo,xi,dims);
|
|
} else {
|
|
IterateI(ND,ND-1,xo,xi,dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
void LebesgueOrder::IterateI(int ND,
|
|
int dim,
|
|
std::vector<IndexInteger> & xo,
|
|
std::vector<IndexInteger> & xi,
|
|
std::vector<IndexInteger> &dims)
|
|
{
|
|
std::vector<IndexInteger> x(ND);
|
|
for(xi[dim]=0;xi[dim]<std::min(dims[dim]-xo[dim],Block[dim]);xi[dim]++){
|
|
if ( dim > 0 ) {
|
|
IterateI(ND,dim-1,xo,xi,dims);
|
|
} else {
|
|
for(int d=0;d<ND;d++){
|
|
x[d]=xi[d]+xo[d];
|
|
}
|
|
IndexInteger index;
|
|
Lexicographic::IndexFromCoor(x,index,grid->_rdimensions);
|
|
_LebesgueReorder.push_back(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LebesgueOrder::ZGraph(void)
|
|
{
|
|
_LebesgueReorder.resize(0);
|
|
|
|
// Align up dimensions to power of two.
|
|
const IndexInteger one=1;
|
|
|
|
IndexInteger ND = grid->_ndimension;
|
|
std::vector<IndexInteger> dims(ND);
|
|
std::vector<IndexInteger> adims(ND);
|
|
std::vector<std::vector<IndexInteger> > bitlist(ND);
|
|
|
|
for(IndexInteger mu=0;mu<ND;mu++){
|
|
dims[mu] = grid->_rdimensions[mu];
|
|
assert ( dims[mu] != 0 );
|
|
adims[mu] = alignup(dims[mu]);
|
|
}
|
|
|
|
// List which bits of padded volume coordinate contribute; this strategy
|
|
// i) avoids recursion
|
|
// ii) has loop lengths at most the width of a 32 bit word.
|
|
int sitebit=0;
|
|
for(int bit=0;bit<32;bit++){
|
|
IndexInteger mask = one<<bit;
|
|
for(int mu=0;mu<ND;mu++){ // mu 0 takes bit 0; mu 1 takes bit 1 etc...
|
|
if ( mask&(adims[mu]-1) ){
|
|
bitlist[mu].push_back(sitebit);
|
|
sitebit++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Work out padded and unpadded volumes
|
|
IndexInteger avol = 1;
|
|
for(int mu=0;mu<ND;mu++) avol = avol * adims[mu];
|
|
|
|
IndexInteger vol = 1;
|
|
for(int mu=0;mu<ND;mu++) vol = vol * dims[mu];
|
|
|
|
// Loop over padded volume, following Lebesgue curve
|
|
// We interleave the bits from sequential "mu".
|
|
std::vector<IndexInteger> ax(ND);
|
|
|
|
for(IndexInteger asite=0;asite<avol;asite++){
|
|
|
|
// Start with zero and collect bits
|
|
for(int mu=0;mu<ND;mu++) ax[mu] = 0;
|
|
|
|
int contained = 1;
|
|
for(int mu=0;mu<ND;mu++){
|
|
|
|
// Build the coordinate on the aligned volume
|
|
for(int bit=0;bit<bitlist[mu].size();bit++){
|
|
int sbit=bitlist[mu][bit];
|
|
|
|
if(asite&(one<<sbit)){
|
|
ax[mu]|=one<<bit;
|
|
}
|
|
}
|
|
|
|
// Is it contained in original box
|
|
if ( ax[mu]>dims[mu]-1 ) contained = 0;
|
|
|
|
}
|
|
|
|
if ( contained ) {
|
|
int site = ax[0]
|
|
+ dims[0]*ax[1]
|
|
+dims[0]*dims[1]*ax[2]
|
|
+dims[0]*dims[1]*dims[2]*ax[3];
|
|
|
|
assert(site < vol);
|
|
_LebesgueReorder.push_back(site);
|
|
}
|
|
}
|
|
assert( _LebesgueReorder.size() == vol );
|
|
|
|
std::vector<int> coor(4);
|
|
for(IndexInteger asite=0;asite<vol;asite++){
|
|
grid->oCoorFromOindex (coor,_LebesgueReorder[asite]);
|
|
std::cout << " site "<<asite << "->" << _LebesgueReorder[asite]<< " = ["
|
|
<< coor[0]<<","
|
|
<< coor[1]<<","
|
|
<< coor[2]<<","
|
|
<< coor[3]<<"]"
|
|
<<std::endl;
|
|
}
|
|
}
|
|
}
|