1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/hadrons/Test_hadrons_distil.cc
2019-02-05 17:32:26 +00:00

447 lines
14 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Tests/Hadrons/Test_hadrons_distil.cc
Copyright (C) 2015-2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_Global(Application &application)
{
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
}
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_LapEvec(Application &application)
{
const char szGaugeName[] = "gauge";
// gauge field
application.createModule<MGauge::Random>(szGaugeName);
// Now make an instance of the LapEvec object
MDistil::LapEvecPar p;
p.gauge = szGaugeName;
//p.EigenPackName = "ePack";
//p.Distil.TI = 8;
//p.Distil.LI = 3;
//p.Distil.Nnoise = 2;
//p.Distil.tSrc = 0;
p.Stout.steps = 3;
p.Stout.parm = 0.2;
p.Cheby.PolyOrder = 11;
p.Cheby.alpha = 0.3;
p.Cheby.beta = 12.5;
p.Lanczos.Nvec = 5;
p.Lanczos.Nk = 6;
p.Lanczos.Np = 2;
p.Lanczos.MaxIt = 1000;
p.Lanczos.resid = 1e-2;
application.createModule<MDistil::LapEvec>("LapEvec",p);
}
/////////////////////////////////////////////////////////////
// Perambulators
/////////////////////////////////////////////////////////////
void test_Perambulators(Application &application)
{
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
PerambPar.eigenPack="LapEvec";
PerambPar.PerambFileName="peramb.bin";
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.Distil.LI=5;
PerambPar.Distil.SI=4;
PerambPar.Distil.TI=8;
PerambPar.nvec=5;
PerambPar.Distil.Ns=4;
PerambPar.Distil.Nt=8;
PerambPar.Distil.Nt_inv=1;
PerambPar.Solver.mass=0.005;
PerambPar.Solver.M5=1.8;
PerambPar.Ls=16;
PerambPar.Solver.CGPrecision=1e-8;
PerambPar.Solver.MaxIterations=10000;
application.createModule<MDistil::PerambLight>("Peramb",PerambPar);
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectors(Application &application)
{
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise="Peramb_noise";
DistilVecPar.perambulator="Peramb_perambulator_light";
DistilVecPar.eigenPack="LapEvec";
DistilVecPar.tsrc = 0;
DistilVecPar.nnoise = 1;
DistilVecPar.LI=5;
DistilVecPar.SI=4;
DistilVecPar.TI=8;
DistilVecPar.nvec=5;
DistilVecPar.Ns=4;
DistilVecPar.Nt=8;
DistilVecPar.Nt_inv=1;
application.createModule<MDistil::DistilVectors>("DistilVecs",DistilVecPar);
}
void test_PerambulatorsS(Application &application)
{
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
PerambPar.eigenPack="LapEvec";
PerambPar.PerambFileName="perambS.bin";
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.Distil.LI=3;
PerambPar.Distil.SI=4;
PerambPar.Distil.TI=8;
PerambPar.nvec=3;
PerambPar.Distil.Ns=4;
PerambPar.Distil.Nt=8;
PerambPar.Distil.Nt_inv=1;
PerambPar.Solver.mass=0.04; //strange mass???
PerambPar.Solver.M5=1.8;
PerambPar.Ls=16;
PerambPar.Solver.CGPrecision=1e-8;
PerambPar.Solver.MaxIterations=10000;
application.createModule<MDistil::PerambLight>("PerambS",PerambPar);
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectorsS(Application &application)
{
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise="PerambS_noise";
DistilVecPar.perambulator="PerambS_perambulator_light";
DistilVecPar.eigenPack="LapEvec";
DistilVecPar.tsrc = 0;
DistilVecPar.nnoise = 1;
DistilVecPar.LI=3;
DistilVecPar.SI=4;
DistilVecPar.TI=8;
DistilVecPar.nvec=3;
DistilVecPar.Ns=4;
DistilVecPar.Nt=8;
DistilVecPar.Nt_inv=1;
application.createModule<MDistil::DistilVectors>("DistilVecsS",DistilVecPar);
}
/////////////////////////////////////////////////////////////
// MesonSink
/////////////////////////////////////////////////////////////
void test_MesonSink(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="Peramb_unsmeared_sink";
A2AMesonFieldPar.right="Peramb_unsmeared_sink";
A2AMesonFieldPar.output="DistilFields";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonSink",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields
/////////////////////////////////////////////////////////////
void test_MesonFieldSL(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecsS_phi";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_phi";
A2AMesonFieldPar.output="DistilFieldsS";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldS",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields
/////////////////////////////////////////////////////////////
void test_MesonField(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs_phi";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_phi";
A2AMesonFieldPar.output="MesonSinks";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonField",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields
/////////////////////////////////////////////////////////////
void test_BaryonField(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_phi";
BContractionPar.two="DistilVecs_phi";
BContractionPar.three="DistilVecs_phi";
BContractionPar.output="BaryonField";
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonField",BContractionPar);
}
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
{
if( bGobbleWhiteSpace )
while( std::isspace(static_cast<unsigned char>(*pstr)) )
pstr++;
const char * p = pstr;
bool bMinus = false;
char c = * p++;
if( c == '+' )
c = * p++;
else if( c == '-' ) {
bMinus = true;
c = * p++;
}
int n = c - '0';
if( n < 0 || n > 9 )
return false;
while( * p >= '0' && * p <= '9' ) {
n = n * 10 + ( * p ) - '0';
p++;
}
if( bMinus )
n *= -1;
ri = n;
pstr = p;
return true;
}
#ifdef DEBUG
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
void DebugShowTensor(MyTensor &x, const char * n)
{
const MyTensor::Index s{x.size()};
std::cout << n << ".size() = " << s << std::endl;
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
const MyTensor::Dimensions & d{x.dimensions()};
std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
std::cout << "Dimensions are ";
for(auto i : d ) std::cout << "[" << i << "]";
std::cout << std::endl;
MyTensor::Index SizeCalculated{1};
std::cout << "Dimensions again";
for(int i=0 ; i < d.size() ; i++ ) {
std::cout << " : [" << i << ", " << x.IndexNames[i] << "]=" << d[i];
SizeCalculated *= d[i];
}
std::cout << std::endl;
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
assert( SizeCalculated == s );
// Initialise
assert( d.size() == 3 );
for( int i = 0 ; i < d[0] ; i++ )
for( int j = 0 ; j < d[1] ; j++ )
for( int k = 0 ; k < d[2] ; k++ ) {
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
SizeCalculated--;
}
// Show raw data
std::cout << "Data follow : " << std::endl;
Complex * p = x.data();
for( auto i = 0 ; i < s ; i++ ) {
if( i ) std::cout << ", ";
std::cout << n << ".data()[" << i << "]=" << * p++;
}
std::cout << std::endl;
}
bool DebugEigenTest()
{
const char pszTestFileName[] = "test_tensor.bin";
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
MyTensor x(as, 2,1,4);
DebugShowTensor(x, "x");
x.WriteBinary(pszTestFileName);
DebugShowTensor(x, "x");
// Test initialisation of an array of strings
for( auto a : as )
std::cout << a << std::endl;
Grid::Hadrons::MDistil::Perambulator<Complex,3,sizeof(Real)> p{as,2,7,2};
DebugShowTensor(p, "p");
std::cout << "p.IndexNames follow" << std::endl;
for( auto a : p.IndexNames )
std::cout << a << std::endl;
// Now see whether we can read a tensor back
std::array<std::string,3> a2={"Alpha", "Gamma", "Delta"};
MyTensor y(a2, 2,4,1);
y.ReadBinary(pszTestFileName);
DebugShowTensor(y, "y");
return true;
}
#endif
int main(int argc, char *argv[])
{
#ifdef DEBUG
// Debug only - test of Eigen::Tensor
std::cout << "sizeof(std::streamsize) = " << sizeof(std::streamsize) << std::endl;
std::cout << "sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl;
//if( DebugEigenTest() ) return 0;
#endif
// Decode command-line parameters. 1st one is which test to run
int iTestNum = -1;
for(int i = 1 ; i < argc ; i++ ) {
std::cout << "argv[" << i << "]=\"" << argv[i] << "\"" << std::endl;
const char * p = argv[i];
if( * p == '/' || * p == '-' ) {
p++;
char c = * p++;
switch(toupper(c)) {
case 'T':
if( bNumber( iTestNum, p ) ) {
std::cout << "Test " << iTestNum << " requested";
if( * p )
std::cout << " (ignoring trailer \"" << p << "\")";
std::cout << std::endl;
}
else
std::cout << "Invalid test \"" << &argv[i][2] << "\"" << std::endl;
break;
default:
std::cout << "Ignoring switch \"" << &argv[i][1] << "\"" << std::endl;
break;
}
}
}
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
// For now perform free propagator test - replace this with distillation test(s)
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
//const unsigned int nt = GridDefaultLatt()[Tp];
switch(iTestNum) {
case 1:
test_Global( application );
test_LapEvec( application );
break;
case 2:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
break;
case 3: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
break;
default: // 4
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_MesonField( application );
break;
case 5: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_PerambulatorsS( application );
test_DistilVectorsS( application );
test_MesonFieldSL( application );
break;
case 6: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_MesonSink( application );
break;
case 7: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_BaryonField( application );
break;
}
LOG(Message) << "====== XML creation for test " << iTestNum << " complete ======" << std::endl;
// execution
application.saveParameterFile("test_hadrons_distil.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}