1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 05:07:05 +01:00
Files
Grid/Grid/algorithms/iterative/AdefGeneric.h
2024-04-05 00:59:53 -04:00

600 lines
19 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/AdefGeneric.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
#define GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
/*
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
*/
NAMESPACE_BEGIN(Grid);
template<class Field>
class TwoLevelCG : public LinearFunction<Field>
{
public:
RealD Tolerance;
Integer MaxIterations;
GridBase *grid;
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
// more most opertor functions
TwoLevelCG(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
Tolerance(tol),
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
{
grid = fine;
};
virtual void operator() (const Field &src, Field &x)
{
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 5;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
std::vector<Field> p(mmax,grid);
std::vector<Field> mmp(mmax,grid);
std::vector<RealD> pAp(mmax);
Field z(grid);
Field tmp(grid);
Field mp (grid);
Field r (grid);
Field mu (grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
//Initial residual computation & set up
RealD guess = norm2(x);
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
RealD src_nrm = norm2(src);
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
if ( src_nrm == 0.0 ) {
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
x=Zero();
}
RealD tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp[0]);
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
{
double n1 = norm2(x);
double n2 = norm2(mmp[0]);
double n3 = norm2(r);
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Solve for Mss mu = P A z and set p = z-mu
// Def2 p = 1 - Q Az = Pright z
// Other algos M2 is trivial
///////////////////////////////////////
PcgM2(z,p[0]);
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
Field pp(grid);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
rtz=rtzp;
d= PcgM3(p[peri_k],mmp[peri_k]);
a = rtz/d;
// Memorise this
pAp[peri_k] = d;
axpy(x,a,p[peri_k],x);
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
// Compute z = M x
PcgM1(r,z);
{
RealD n1,n2;
n1=norm2(r);
n2=norm2(z);
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
}
rtzp =real(innerProduct(r,z));
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
// PcgM2(z,p[0]);
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
p[peri_kp]=mu;
// Standard search direction p -> z + b p
b = (rtzp)/rtz;
int northog;
// k=zero <=> peri_kp=1; northog = 1
// k=1 <=> peri_kp=2; northog = 2
// ... ... ...
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
// k=mmax-1<=> peri_kp=0; northog = 1
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
RealD beta = -pbApk/pAp[peri_back];
axpy(p[peri_kp],beta,p[peri_back],p[peri_kp]);
}
RealD rrn=sqrt(rn/ssq);
RealD rtn=sqrt(rtz/ssq);
RealD rtnp=sqrt(rtzp/ssq);
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
// Stopping condition
if ( rn <= rsq ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp[0]);
axpy(tmp,-1.0,src,mmp[0]);
RealD mmpnorm = sqrt(norm2(mmp[0]));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
{
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
src[0].Grid()->Barrier();
int nrhs = src.size();
std::vector<RealD> f(nrhs);
std::vector<RealD> rtzp(nrhs);
std::vector<RealD> rtz(nrhs);
std::vector<RealD> a(nrhs);
std::vector<RealD> d(nrhs);
std::vector<RealD> b(nrhs);
std::vector<RealD> rptzp(nrhs);
/////////////////////////////
// Set up history vectors
/////////////////////////////
int mmax = 3;
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
src[0].Grid()->Barrier();
std::vector<Field> z(nrhs,grid);
std::vector<Field> mp (nrhs,grid);
std::vector<Field> r (nrhs,grid);
std::vector<Field> mu (nrhs,grid);
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
src[0].Grid()->Barrier();
//Initial residual computation & set up
std::vector<RealD> src_nrm(nrhs);
for(int rhs=0;rhs<nrhs;rhs++) {
src_nrm[rhs]=norm2(src[rhs]);
assert(src_nrm[rhs]!=0.0);
}
std::vector<RealD> tn(nrhs);
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
Vstart(x,src);
for(int rhs=0;rhs<nrhs;rhs++){
// r0 = b -A x0
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
}
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
// This needs a multiRHS version for acceleration
PcgM1(r,z);
std::vector<RealD> ssq(nrhs);
std::vector<RealD> rsq(nrhs);
std::vector<Field> pp(nrhs,grid);
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
p[rhs][0]=z[rhs];
ssq[rhs]=norm2(src[rhs]);
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
}
std::vector<RealD> rn(nrhs);
for (int k=0;k<=MaxIterations;k++){
int peri_k = k % mmax;
int peri_kp = (k+1) % mmax;
for(int rhs=0;rhs<nrhs;rhs++){
rtz[rhs]=rtzp[rhs];
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
a[rhs] = rtz[rhs]/d[rhs];
// Memorise this
pAp[rhs][peri_k] = d[rhs];
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
}
// Compute z = M x (for *all* RHS)
PcgM1(r,z);
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
grid->Barrier();
RealD max_rn=0.0;
for(int rhs=0;rhs<nrhs;rhs++){
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
mu[rhs]=z[rhs];
p[rhs][peri_kp]=mu[rhs];
// Standard search direction p == z + b p
b[rhs] = (rtzp[rhs])/rtz[rhs];
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
for(int back=0; back < northog; back++){
int peri_back = (k-back)%mmax;
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
RealD beta = -pbApk/pAp[rhs][peri_back];
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
}
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
if ( rrn > max_rn ) max_rn = rrn;
}
// Stopping condition based on worst case
if ( max_rn <= Tolerance ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
for(int rhs=0;rhs<nrhs;rhs++){
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
Field tmp(grid);
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
}
return;
}
}
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
for(int rhs=0;rhs<nrhs;rhs++){
RealD xnorm = sqrt(norm2(x[rhs]));
RealD srcnorm = sqrt(norm2(src[rhs]));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
}
}
public:
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
{
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<in.size();rhs++){
this->PcgM1(in[rhs],out[rhs]);
}
}
virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
{
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
for(int rhs=0;rhs<x.size();rhs++){
this->Vstart(x[rhs],src[rhs]);
}
}
virtual void Vstart(Field & x,const Field & src)=0;
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout.
/////////////////////////////////////////////////////////////////////
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2 : public TwoLevelCG<Field>
{
public:
///////////////////////////////////////////////////////////////////////////////////
// Need something that knows how to get from Coarse to fine and back again
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
///////////////////////////////////////////////////////////////////////////////////
GridBase *coarsegrid;
Aggregation &_Aggregates;
LinearFunction<CoarseField> &_CoarseSolver;
LinearFunction<CoarseField> &_CoarseSolverPrecise;
///////////////////////////////////////////////////////////////////////////////////
// more most opertor functions
TwoLevelADEF2(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
Aggregation &Aggregates
) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
_CoarseSolver(CoarseSolver),
_CoarseSolverPrecise(CoarseSolverPrecise),
_Aggregates(Aggregates)
{
coarsegrid = Aggregates.CoarseGrid;
};
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("MultiGridPreconditioner ");
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(this->grid);
Field Min(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
GridStopWatch SmootherTimer;
GridStopWatch MatrixTimer;
SmootherTimer.Start();
this->_Smoother(in,Min);
SmootherTimer.Stop();
MatrixTimer.Start();
this->_FineLinop.HermOp(Min,out);
MatrixTimer.Stop();
axpy(tmp,-1.0,out,in); // tmp = in - A Min
GridStopWatch ProjTimer;
GridStopWatch CoarseTimer;
GridStopWatch PromTimer;
ProjTimer.Start();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
ProjTimer.Stop();
CoarseTimer.Start();
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
CoarseTimer.Stop();
PromTimer.Start();
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
PromTimer.Stop();
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
axpy(out,1.0,Min,tmp); // Min+tmp
}
virtual void Vstart(Field & x,const Field & src)
{
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
// = [1 - Ass_inv A] Guess + Assinv src
// = P^T guess + Assinv src
// = Vstart [Tang notation]
// This gives:
// W^T (src - A x_0) = src_s - A guess_s - r_s
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
Field r(this->grid);
Field mmp(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
this->_Aggregates.ProjectToSubspace(PleftProj,src);
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
}
};
template<class Field>
class TwoLevelADEF1defl : public TwoLevelCG<Field>
{
public:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
TwoLevelADEF1defl(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
std::vector<Field> &_evec,
std::vector<RealD> &_eval) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
evec(_evec),
eval(_eval)
{};
// Can just inherit existing M2
// Can just inherit existing M3
// Simple vstart - do nothing
virtual void Vstart(Field & x,const Field & src){
x=src; // Could apply Q
};
// Override PcgM1
virtual void PcgM1(Field & in, Field & out)
{
GRID_TRACE("EvecPreconditioner ");
int N=evec.size();
Field Pin(this->grid);
Field Qin(this->grid);
//MP + Q = M(1-AQ) + Q = M
// // If we are eigenvector deflating in coarse space
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
// // A Q = Sum_i |phi_i> <phi_i|
// // M(1-AQ) = M(1-proj) + Q
Qin.Checkerboard()=in.Checkerboard();
Qin = Zero();
Pin = in;
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
auto ip = TensorRemove(innerProduct(tmp,in));
axpy(Qin, ip / eval[i],tmp,Qin);
axpy(Pin, -ip ,tmp,Pin);
}
this->_Smoother(Pin,out);
out = out + Qin;
}
};
NAMESPACE_END(Grid);
#endif