1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-08-23 22:47:10 +01:00
Files
Grid/Grid/algorithms/approx/RemezGeneral.h
Peter Boyle 9e6a4a4737 Assertion updates to macros (mostly) with backtrace.
WIlson flow to include options for DBW2, Iwasaki, Symanzik.
View logging for data assurance
2025-08-07 15:48:38 +00:00

171 lines
4.8 KiB
C++

/*
C.Kelly Jan 2020 based on implementation by M. Clark May 2005
AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial
It includes optional restriction to odd/even polynomials for the numerator and/or denominator
*/
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
#define INCLUDED_ALG_REMEZ_GENERAL_H
#include <stddef.h>
#include <Grid/GridStd.h>
#ifdef HAVE_LIBGMP
#include "bigfloat.h"
#else
#include "bigfloat_double.h"
#endif
class AlgRemezGeneral{
public:
enum PolyType { Even, Odd, Full };
private:
// In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
bigfloat (*f)(bigfloat x, void *data);
void *data;
// The approximation parameters
std::vector<bigfloat> param;
bigfloat norm;
// The number of non-zero terms in the numerator and denominator
int n, d;
// The numerator and denominator degree (i.e. the largest power)
int pow_n, pow_d;
// Specify if the numerator and/or denominator are odd/even polynomials
PolyType num_type;
PolyType den_type;
std::vector<int> num_pows; //contains the mapping, with -1 if not present
std::vector<int> den_pows;
// The bounds of the approximation
bigfloat apstrt, apwidt, apend;
// Variables used to calculate the approximation
int nd1, iter;
std::vector<bigfloat> xx;
std::vector<bigfloat> mm;
std::vector<bigfloat> step;
bigfloat delta, spread;
// Variables used in search
std::vector<bigfloat> yy;
// Variables used in solving linear equations
std::vector<bigfloat> A;
std::vector<bigfloat> B;
std::vector<int> IPS;
// The number of equations we must solve at each iteration (n+d+1)
int neq;
// The precision of the GNU MP library
long prec;
// Initialize member variables associated with the polynomial's properties
void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
// Initial values of maximal and minmal errors
void initialGuess();
// Initialise step sizes
void stpini();
// Initialize the algorithm
void reinitializeAlgorithm();
// Solve the equations
void equations();
// Search for error maxima and minima
void search();
// Calculate function required for the approximation
inline bigfloat func(bigfloat x) const{
return f(x, data);
}
// Compute size and sign of the approximation error at x
bigfloat getErr(bigfloat x, int *sign) const;
// Solve the system AX=B where X = param
int simq();
// Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
bigfloat approx(bigfloat x) const;
public:
AlgRemezGeneral(double lower, double upper, long prec,
bigfloat (*f)(bigfloat x, void *data), void *data);
inline int getDegree(void) const{
GRID_ASSERT(n==d);
return n;
}
// Reset the bounds of the approximation
inline void setBounds(double lower, double upper) {
apstrt = lower;
apend = upper;
apwidt = apend - apstrt;
}
// Get the bounds of the approximation
inline void getBounds(double &lower, double &upper) const{
lower=(double)apstrt;
upper=(double)apend;
}
// Run the algorithm to generate the rational approximation
double generateApprox(int num_degree, int den_degree,
PolyType num_type, PolyType den_type,
const double tolerance = 1e-15, const int report_freq = 1000);
inline double generateApprox(int num_degree, int den_degree,
const double tolerance = 1e-15, const int report_freq = 1000){
return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
}
// Evaluate the rational form P(x)/Q(x) using coefficients from the
// solution vector param
inline double evaluateApprox(double x) const{
return (double)approx((bigfloat)x);
}
// Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
inline double evaluateInverseApprox(double x) const{
return 1.0/(double)approx((bigfloat)x);
}
// Calculate function required for the approximation
inline double evaluateFunc(double x) const{
return (double)func((bigfloat)x);
}
// Calculate inverse function required for the approximation
inline double evaluateInverseFunc(double x) const{
return 1.0/(double)func((bigfloat)x);
}
// Dump csv of function, approx and error
void csv(std::ostream &os = std::cout) const;
// Get the coefficient of the term x^i in the numerator
inline double getCoeffNum(const int i) const{
return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
}
// Get the coefficient of the term x^i in the denominator
inline double getCoeffDen(const int i) const{
if(i == pow_d) return 1.0;
else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);
}
};
#endif