mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
2583570e17
Tanh/Zolo * (Cayley/PartFrac/ContFrac) * (Mobius/Shamir/Wilson) Approx Representation Kernel. All are done with space-time taking part in checkerboarding, Ls uncheckerboarded Have only so far tested the Domain Wall limit of mobius, and at that only checked that it i) Inverts ii) 5dim DW == Ls copies of 4dim D2 iii) MeeInv Mee == 1 iv) Meo+Mee+Moe+Moo == M unprec. v) MpcDagMpc is hermitan vi) Mdag is the adjoint of M between stochastic vectors. That said, the RB schur solve, RB MpcDagMpc solve, Unprec solve all converge and the true residual becomes small; so pretty good tests.
132 lines
5.3 KiB
C++
132 lines
5.3 KiB
C++
#ifndef GRID_ALGORITHM_LINEAR_OP_H
|
|
#define GRID_ALGORITHM_LINEAR_OP_H
|
|
|
|
namespace Grid {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
// LinearOperators Take a something and return a something.
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
|
|
//SBase
|
|
// i) F(a x + b y) = aF(x) + b F(y).
|
|
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
|
|
//
|
|
// Would be fun to have a test linearity & Herm Conj function!
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Field> class LinearOperatorBase {
|
|
public:
|
|
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
|
|
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Hermitian operators are self adjoint and only require Op to be defined, so refine the base
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Field> class HermitianOperatorBase : public LinearOperatorBase<Field> {
|
|
public:
|
|
virtual void OpAndNorm(const Field &in, Field &out,double &n1,double &n2)=0;
|
|
void AdjOp(const Field &in, Field &out) {
|
|
Op(in,out);
|
|
};
|
|
void Op(const Field &in, Field &out) {
|
|
double n1,n2;
|
|
OpAndNorm(in,out,n1,n2);
|
|
};
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Whereas non hermitian takes a generic sparse matrix (e.g. lattice action)
|
|
// conforming to sparse matrix interface and builds the full checkerboard non-herm operator
|
|
// Op and AdjOp distinct.
|
|
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
|
|
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
|
|
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
|
|
// replication of code.
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class NonHermitianOperator : public LinearOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
NonHermitianOperator(Matrix &Mat): _Mat(Mat){};
|
|
void Op (const Field &in, Field &out){
|
|
_Mat.M(in,out);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){
|
|
_Mat.Mdag(in,out);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Redblack Non hermitian wrapper
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class NonHermitianCheckerBoardedOperator : public LinearOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
NonHermitianCheckerBoardedOperator(Matrix &Mat): _Mat(Mat){};
|
|
void Op (const Field &in, Field &out){
|
|
_Mat.Mpc(in,out);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){ //
|
|
_Mat.MpcDag(in,out);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Hermitian wrapper
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class HermitianOperator : public HermitianOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
HermitianOperator(Matrix &Mat): _Mat(Mat) {};
|
|
void OpAndNorm(const Field &in, Field &out,double &n1,double &n2){
|
|
return _Mat.MdagM(in,out,n1,n2);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Hermitian CheckerBoarded wrapper
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class HermitianCheckerBoardedOperator : public HermitianOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
HermitianCheckerBoardedOperator(Matrix &Mat): _Mat(Mat) {};
|
|
void OpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
_Mat.MpcDagMpc(in,out,n1,n2);
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Base classes for functions of operators
|
|
/////////////////////////////////////////////////////////////
|
|
template<class Field> class OperatorFunction {
|
|
public:
|
|
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
|
};
|
|
template<class Field> class HermitianOperatorFunction {
|
|
public:
|
|
virtual void operator() (HermitianOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
|
};
|
|
|
|
// FIXME : To think about
|
|
|
|
// Chroma functionality list defining LinearOperator
|
|
/*
|
|
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
|
|
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
|
|
virtual const Subset& subset() const = 0;
|
|
virtual unsigned long nFlops() const { return 0; }
|
|
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
|
|
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
|
|
const Subset& subset() const {return all;}
|
|
};
|
|
*/
|
|
|
|
|
|
}
|
|
|
|
#endif
|