1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/hadrons/Test_hadrons_distil.cc

701 lines
23 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Tests/Hadrons/Test_hadrons_distil.cc
Copyright (C) 2015-2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <typeinfo>
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_Global(Application &application)
{
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
}
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_LapEvec(Application &application)
{
const char szGaugeName[] = "gauge";
// gauge field
application.createModule<MGauge::Random>(szGaugeName);
// Now make an instance of the LapEvec object
MDistil::LapEvecPar p;
p.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
p.ConfigFileName="ckpoint_lat.3000";
p.gauge = szGaugeName;
//p.EigenPackName = "ePack";
//p.Distil.TI = 8;
//p.Distil.LI = 3;
//p.Distil.Nnoise = 2;
//p.Distil.tSrc = 0;
p.Stout.steps = 3;
p.Stout.parm = 0.2;
p.Cheby.PolyOrder = 11;
p.Cheby.alpha = 0.3;
p.Cheby.beta = 12.5;
p.Lanczos.Nvec = 5;
p.Lanczos.Nk = 6;
p.Lanczos.Np = 2;
p.Lanczos.MaxIt = 1000;
p.Lanczos.resid = 1e-2;
application.createModule<MDistil::LapEvec>("LapEvec",p);
}
/////////////////////////////////////////////////////////////
// Perambulators
/////////////////////////////////////////////////////////////
void test_Perambulators(Application &application)
{
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
PerambPar.eigenPack="LapEvec";
PerambPar.PerambFileName="peramb.bin";
PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
PerambPar.ConfigFileName="ckpoint_lat.3000";
PerambPar.UniqueIdentifier="full_dilution";
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.Distil.LI=5;
PerambPar.Distil.SI=4;
PerambPar.Distil.TI=8;
PerambPar.nvec=5;
PerambPar.Distil.Ns=4;
PerambPar.Distil.Nt=8;
PerambPar.Distil.Nt_inv=1;
PerambPar.Solver.mass=0.005;
PerambPar.Solver.M5=1.8;
PerambPar.Ls=16;
PerambPar.Solver.CGPrecision=1e-8;
PerambPar.Solver.MaxIterations=10000;
application.createModule<MDistil::PerambLight>("Peramb",PerambPar);
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectors(Application &application)
{
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise="Peramb_noise";
DistilVecPar.perambulator="Peramb_perambulator_light";
DistilVecPar.eigenPack="LapEvec";
DistilVecPar.tsrc = 0;
DistilVecPar.nnoise = 1;
DistilVecPar.LI=5;
DistilVecPar.SI=4;
DistilVecPar.TI=8;
DistilVecPar.nvec=5;
DistilVecPar.Ns=4;
DistilVecPar.Nt=8;
DistilVecPar.Nt_inv=1;
application.createModule<MDistil::DistilVectors>("DistilVecs",DistilVecPar);
}
void test_PerambulatorsS(Application &application)
{
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
PerambPar.eigenPack="LapEvec";
PerambPar.PerambFileName="perambS.bin";
PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
PerambPar.ConfigFileName="ckpoint_lat.3000";
PerambPar.UniqueIdentifier="full_dilution";
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.Distil.LI=3;
PerambPar.Distil.SI=4;
PerambPar.Distil.TI=8;
PerambPar.nvec=3;
PerambPar.Distil.Ns=4;
PerambPar.Distil.Nt=8;
PerambPar.Distil.Nt_inv=1;
PerambPar.Solver.mass=0.04; //strange mass???
PerambPar.Solver.M5=1.8;
PerambPar.Ls=16;
PerambPar.Solver.CGPrecision=1e-8;
PerambPar.Solver.MaxIterations=10000;
application.createModule<MDistil::PerambLight>("PerambS",PerambPar);
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectorsS(Application &application)
{
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise="PerambS_noise";
DistilVecPar.perambulator="PerambS_perambulator_light";
DistilVecPar.eigenPack="LapEvec";
DistilVecPar.tsrc = 0;
DistilVecPar.nnoise = 1;
DistilVecPar.LI=3;
DistilVecPar.SI=4;
DistilVecPar.TI=8;
DistilVecPar.nvec=3;
DistilVecPar.Ns=4;
DistilVecPar.Nt=8;
DistilVecPar.Nt_inv=1;
application.createModule<MDistil::DistilVectors>("DistilVecsS",DistilVecPar);
}
/////////////////////////////////////////////////////////////
// MesonSink
/////////////////////////////////////////////////////////////
void test_MesonSink(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="Peramb_unsmeared_sink";
A2AMesonFieldPar.right="Peramb_unsmeared_sink";
A2AMesonFieldPar.output="DistilFields";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonSink",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields
/////////////////////////////////////////////////////////////
void test_MesonFieldSL(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecsS_phi";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_phi";
A2AMesonFieldPar.output="DistilFieldsS";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldS",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields - phiphi
/////////////////////////////////////////////////////////////
void test_MesonField(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs_phi";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_phi";
A2AMesonFieldPar.output="MesonSinksPhi";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonField",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields - rhorho
/////////////////////////////////////////////////////////////
void test_MesonFieldRho(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs_rho";
//A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.right="DistilVecs_rho";
A2AMesonFieldPar.output="MesonSinksRho";
A2AMesonFieldPar.gammas="all";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - phiphiphi
/////////////////////////////////////////////////////////////
void test_BaryonFieldPhi(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_phi";
BContractionPar.two="DistilVecs_phi";
BContractionPar.three="DistilVecs_phi";
BContractionPar.output="BaryonFieldPhi";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldPhi",BContractionPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - rhorhorho
/////////////////////////////////////////////////////////////
void test_BaryonFieldRho(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_rho";
BContractionPar.two="DistilVecs_rho";
BContractionPar.three="DistilVecs_rho";
BContractionPar.output="BaryonFieldRho";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldRho",BContractionPar);
}
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
{
if( bGobbleWhiteSpace )
while( std::isspace(static_cast<unsigned char>(*pstr)) )
pstr++;
const char * p = pstr;
bool bMinus = false;
char c = * p++;
if( c == '+' )
c = * p++;
else if( c == '-' ) {
bMinus = true;
c = * p++;
}
int n = c - '0';
if( n < 0 || n > 9 )
return false;
while( * p >= '0' && * p <= '9' ) {
n = n * 10 + ( * p ) - '0';
p++;
}
if( bMinus )
n *= -1;
ri = n;
pstr = p;
return true;
}
#ifdef DEBUG
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
void DebugShowTensor(MyTensor &x, const char * n)
{
const MyTensor::Index s{x.size()};
std::cout << n << ".size() = " << s << std::endl;
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
const MyTensor::Dimensions & d{x.dimensions()};
std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
std::cout << "Dimensions are ";
for(auto i : d ) std::cout << "[" << i << "]";
std::cout << std::endl;
MyTensor::Index SizeCalculated{1};
std::cout << "Dimensions again";
for(int i=0 ; i < d.size() ; i++ ) {
std::cout << " : [" << i << ", " << x.IndexNames[i] << "]=" << d[i];
SizeCalculated *= d[i];
}
std::cout << std::endl;
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
assert( SizeCalculated == s );
// Initialise
assert( d.size() == 3 );
for( int i = 0 ; i < d[0] ; i++ )
for( int j = 0 ; j < d[1] ; j++ )
for( int k = 0 ; k < d[2] ; k++ ) {
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
SizeCalculated--;
}
// Show raw data
std::cout << "Data follow : " << std::endl;
Complex * p = x.data();
for( auto i = 0 ; i < s ; i++ ) {
if( i ) std::cout << ", ";
std::cout << n << ".data()[" << i << "]=" << * p++;
}
std::cout << std::endl;
}
// Test whether typedef and underlying types are the same
void DebugTestTypeEqualities(void)
{
Real r1;
RealD r2;
double r3;
const std::type_info &tr1{typeid(r1)};
const std::type_info &tr2{typeid(r2)};
const std::type_info &tr3{typeid(r3)};
if( tr1 == tr2 && tr2 == tr3 )
std::cout << "r1, r2 and r3 are the same type" << std::endl;
else
std::cout << "r1, r2 and r3 are different types" << std::endl;
std::cout << "r1 is a " << tr1.name() << std::endl;
std::cout << "r2 is a " << tr2.name() << std::endl;
std::cout << "r3 is a " << tr3.name() << std::endl;
// These are the same
Complex c1;
std::complex<Real> c2;
const std::type_info &tc1{typeid(c1)};
const std::type_info &tc2{typeid(c2)};
const std::type_info &tc3{typeid(SpinVector::scalar_type)};
if( tc1 == tc2 && tc2 == tc3)
std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl;
else
std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl;
std::cout << "c1 is a " << tc1.name() << std::endl;
std::cout << "c2 is a " << tc2.name() << std::endl;
std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl;
// These are the same
SpinVector s1;
iSpinVector<Complex > s2;
iScalar<iVector<iScalar<Complex>, Ns> > s3;
const std::type_info &ts1{typeid(s1)};
const std::type_info &ts2{typeid(s2)};
const std::type_info &ts3{typeid(s3)};
if( ts1 == ts2 && ts2 == ts3 )
std::cout << "s1, s2 and s3 are the same type" << std::endl;
else
std::cout << "s1, s2 and s3 are different types" << std::endl;
std::cout << "s1 is a " << ts1.name() << std::endl;
std::cout << "s2 is a " << ts2.name() << std::endl;
std::cout << "s3 is a " << ts3.name() << std::endl;
// These are the same
SpinColourVector sc1;
iSpinColourVector<Complex > sc2;
const std::type_info &tsc1{typeid(sc1)};
const std::type_info &tsc2{typeid(sc2)};
if( tsc1 == tsc2 )
std::cout << "sc1 and sc2 are the same type" << std::endl;
else
std::cout << "sc1 and sc2 are different types" << std::endl;
std::cout << "sc1 is a " << tsc1.name() << std::endl;
std::cout << "sc2 is a " << tsc2.name() << std::endl;
}
bool DebugEigenTest()
{
const char pszTestFileName[] = "test_tensor.bin";
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
MyTensor x(as, 2,1,4);
DebugShowTensor(x, "x");
x.WriteBinary(pszTestFileName);
DebugShowTensor(x, "x");
// Test initialisation of an array of strings
for( auto a : as )
std::cout << a << std::endl;
Grid::Hadrons::MDistil::Perambulator<Complex,3,sizeof(Real)> p{as,2,7,2};
DebugShowTensor(p, "p");
std::cout << "p.IndexNames follow" << std::endl;
for( auto a : p.IndexNames )
std::cout << a << std::endl;
// Now see whether we can read a tensor back
std::array<std::string,3> Names2={"Alpha", "Gamma", "Delta"};
MyTensor y(Names2, 2,4,1);
y.ReadBinary(pszTestFileName);
DebugShowTensor(y, "y");
// Testing whether typedef produces the same type - yes it does
DebugTestTypeEqualities();
std::cout << std::endl;
// How to access members of SpinColourVector
SpinColourVector sc;
for( int s = 0 ; s < Ns ; s++ ) {
auto cv{sc()(s)};
iVector<Complex,Nc> c2{sc()(s)};
std::cout << " cv is a " << typeid(cv).name() << std::endl;
std::cout << " c2 is a " << typeid(c2).name() << std::endl;
for( int c = 0 ; c < Nc ; c++ ) {
Complex & z{cv(c)};
std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl;
}
}
// We could have removed the Lorentz index independently, but much easier to do as we do above
iVector<iVector<Complex,Nc>,Ns> sc2{sc()};
std::cout << "sc() is a " << typeid(sc()).name() << std::endl;
std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl;
// Or you can access elements directly
std::complex<Real> z = sc()(0)(0);
std::cout << "z = " << z << std::endl;
sc()(3)(2) = std::complex<Real>{3.141,-3.141};
std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl;
return true;
}
template <typename T>
void DebugGridTensorTest_print( int i )
{
std::cout << i << " : " << EigenIO::is_tensor<T>::value
<< ", depth " << EigenIO::Traits<T>::depth
<< ", rank " << EigenIO::Traits<T>::rank
<< ", rank_non_trivial " << EigenIO::Traits<T>::rank_non_trivial
<< ", count " << EigenIO::Traits<T>::count
<< ", scalar_size " << EigenIO::Traits<T>::scalar_size
<< ", size " << EigenIO::Traits<T>::size
<< std::endl;
}
// begin() and end() are the minimum necessary to support range-for loops
// should really turn this into an iterator ...
template<typename T, int N>
class TestObject {
public:
using value_type = T;
private:
value_type * m_p;
public:
TestObject() {
m_p = reinterpret_cast<value_type *>(std::malloc(N * sizeof(value_type)));
}
~TestObject() { std::free(m_p); }
inline value_type * begin(void) { return m_p; }
inline value_type * end(void) { return m_p + N; }
};
bool DebugFelixTensorTest( void )
{
unsigned int Nmom = 2;
unsigned int Nt = 2;
unsigned int N_1 = 2;
unsigned int N_2 = 2;
unsigned int N_3 = 2;
using BaryonTensorSet = Eigen::Tensor<Complex, 6, Eigen::RowMajor>;
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
std::vector<Complex> Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2);
using BaryonTensorMap = Eigen::TensorMap<BaryonTensorSet>;
BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3);
using TestScalar = std::complex<float>;
//typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> TestTensorFixed;
using T3 = Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor>;
using T2 = Eigen::Tensor<TestScalar, 2, Eigen::StorageOptions::RowMajor>;
T3 a(4,3,2);
for_all( a, [&](TestScalar &c, float n, const std::size_t * pDims ){
c = std::complex<float>{n,-n};
} );
std::cout << "a initialised to:\n" << a << std::endl;
Eigen::array<int, 3> offsets = {0,0,0};
Eigen::array<int, 3> extents = {1,3,2};
T2 b(3,2);
auto c = a.slice( offsets, extents).reshape(extents);
std::cout << "c is:\n" << c << std::endl;
b = a.chip(0,0);
std::cout << "b is:\n" << b << std::endl;
//b = c;
return true;
}
bool DebugGridTensorTest( void )
{
DebugFelixTensorTest();
typedef Complex t1;
typedef iScalar<t1> t2;
typedef iVector<t1, Ns> t3;
typedef iMatrix<t1, Nc> t4;
typedef iVector<iMatrix<t1,1>,4> t5;
typedef iScalar<t5> t6;
typedef iMatrix<t6, 3> t7;
typedef iMatrix<iVector<iScalar<t7>,4>,2> t8;
int i = 1;
DebugGridTensorTest_print<t1>( i++ );
DebugGridTensorTest_print<t2>( i++ );
DebugGridTensorTest_print<t3>( i++ );
DebugGridTensorTest_print<t4>( i++ );
DebugGridTensorTest_print<t5>( i++ );
DebugGridTensorTest_print<t6>( i++ );
DebugGridTensorTest_print<t7>( i++ );
DebugGridTensorTest_print<t8>( i++ );
//using TOC7 = TestObject<std::complex<double>, 7>;
using TOC7 = t7;
TOC7 toc7;
constexpr std::complex<double> Inc{1,-1};
std::complex<double> Start{Inc};
for( auto &x : toc7 ) {
x = Start;
Start += Inc;
}
i = 0;
for( auto x : toc7 ) std::cout << "toc7[" << i++ << "] = " << x << std::endl;
t2 o2;
auto a2 = TensorRemove(o2);
//t3 o3;
//t4 o4;
//auto a3 = TensorRemove(o3);
//auto a4 = TensorRemove(o4);
return true;
}
#endif
int main(int argc, char *argv[])
{
#ifdef DEBUG
// Debug only - test of Eigen::Tensor
std::cout << "sizeof(int) = " << sizeof(int)
<< ", sizeof(long) = " << sizeof(long)
<< ", sizeof(size_t) = " << sizeof(size_t)
<< ", sizeof(std::size_t) = " << sizeof(std::size_t)
<< ", sizeof(std::streamsize) = " << sizeof(std::streamsize)
<< ", sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl;
//if( DebugEigenTest() ) return 0;
if(DebugGridTensorTest()) return 0;
#endif
// Decode command-line parameters. 1st one is which test to run
int iTestNum = -1;
for(int i = 1 ; i < argc ; i++ ) {
std::cout << "argv[" << i << "]=\"" << argv[i] << "\"" << std::endl;
const char * p = argv[i];
if( * p == '/' || * p == '-' ) {
p++;
char c = * p++;
switch(toupper(c)) {
case 'T':
if( bNumber( iTestNum, p ) ) {
std::cout << "Test " << iTestNum << " requested";
if( * p )
std::cout << " (ignoring trailer \"" << p << "\")";
std::cout << std::endl;
}
else
std::cout << "Invalid test \"" << &argv[i][2] << "\"" << std::endl;
break;
default:
std::cout << "Ignoring switch \"" << &argv[i][1] << "\"" << std::endl;
break;
}
}
}
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
// For now perform free propagator test - replace this with distillation test(s)
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
//const unsigned int nt = GridDefaultLatt()[Tp];
switch(iTestNum) {
case 1:
test_Global( application );
test_LapEvec( application );
break;
case 2:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
break;
case 3: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
break;
default: // 4
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_MesonField( application );
break;
case 5: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_PerambulatorsS( application );
test_DistilVectorsS( application );
test_MesonFieldSL( application );
break;
case 6: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_MesonSink( application );
break;
case 7: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_BaryonFieldPhi( application );
test_BaryonFieldRho( application );
break;
case 8: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_MesonField( application );
test_MesonFieldRho( application );
break;
}
LOG(Message) << "====== XML creation for test " << iTestNum << " complete ======" << std::endl;
// execution
application.saveParameterFile("test_hadrons_distil.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}