1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/Hadrons/Modules/MScalar/VPCounterTerms.cc

261 lines
9.1 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MScalar/VPCounterTerms.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TVPCounterTerms implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TVPCounterTerms::TVPCounterTerms(const std::string name)
: Module<VPCounterTermsPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TVPCounterTerms::getInput(void)
{
std::vector<std::string> in = {par().source};
return in;
}
std::vector<std::string> TVPCounterTerms::getOutput(void)
{
std::vector<std::string> out;
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TVPCounterTerms::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
phaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
}
GFSrcName_ = getName() + "_DinvSrc";
phatsqName_ = getName() + "_pHatSquared";
prop0Name_ = getName() + "_freeProp";
twoscalarName_ = getName() + "_2scalarProp";
psquaredName_ = getName() + "_psquaredProp";
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
}
}
envCreateLat(ScalarField, freeMomPropName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
envCreateLat(ScalarField, phaseName_[mu]);
}
envCreateLat(ScalarField, phatsqName_);
envCreateLat(ScalarField, GFSrcName_);
envCreateLat(ScalarField, prop0Name_);
envCreateLat(ScalarField, twoscalarName_);
envCreateLat(ScalarField, psquaredName_);
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
envCacheLat(ScalarField, momPhaseName_[i_p]);
}
}
envTmpLat(ScalarField, "buf");
envTmpLat(ScalarField, "tmp_vp");
envTmpLat(ScalarField, "vpPhase");
}
// execution ///////////////////////////////////////////////////////////////////
void TVPCounterTerms::execute(void)
{
auto &source = envGet(ScalarField, par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, tmp_vp);
// Momentum-space free scalar propagator
auto &G = envGet(ScalarField, freeMomPropName_);
SIMPL::MomentumSpacePropagator(G, par().mass);
// Phases and hat{p}^2
auto &phatsq = envGet(ScalarField, phatsqName_);
std::vector<int> &l = env().getGrid()->_fdimensions;
LOG(Message) << "Calculating shift phases..." << std::endl;
phatsq = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
auto &phmu = envGet(ScalarField, phaseName_[mu]);
LatticeCoordinate(buf, mu);
phmu = exp(ci*twoPiL*buf);
phase_.push_back(&phmu);
buf = 2.*sin(.5*twoPiL*buf);
phatsq = phatsq + buf*buf;
}
// G*F*src
auto &GFSrc = envGet(ScalarField, GFSrcName_);
fft.FFT_all_dim(GFSrc, source, FFT::forward);
GFSrc = G*GFSrc;
// Position-space free scalar propagator
auto &prop0 = envGet(ScalarField, prop0Name_);
prop0 = GFSrc;
fft.FFT_all_dim(prop0, prop0, FFT::backward);
// Propagators for counter-terms
auto &twoscalarProp = envGet(ScalarField, twoscalarName_);
auto &psquaredProp = envGet(ScalarField, psquaredName_);
twoscalarProp = G*GFSrc;
fft.FFT_all_dim(twoscalarProp, twoscalarProp, FFT::backward);
psquaredProp = G*phatsq*GFSrc;
fft.FFT_all_dim(psquaredProp, psquaredProp, FFT::backward);
// Prepare output data structure if necessary
Result outputData;
if (!par().output.empty())
{
outputData.projection.resize(par().outputMom.size());
outputData.lattice_size = env().getGrid()->_fdimensions;
outputData.mass = par().mass;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
outputData.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
outputData.projection[i_p].twoScalar.resize(env().getNd());
outputData.projection[i_p].threeScalar.resize(env().getNd());
outputData.projection[i_p].pSquaredInsertion.resize(env().getNd());
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
outputData.projection[i_p].twoScalar[nu].resize(env().getNd());
outputData.projection[i_p].threeScalar[nu].resize(env().getNd());
outputData.projection[i_p].pSquaredInsertion[nu].resize(env().getNd());
}
// Calculate phase factors
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
momph_ip = zero;
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
Real twoPiL = M_PI*2./l[j];
LatticeCoordinate(buf, j);
buf = outputData.projection[i_p].momentum[j]*twoPiL*buf;
momph_ip = momph_ip + buf;
}
momph_ip = exp(-ci*momph_ip);
momPhase_.push_back(&momph_ip);
}
}
// Contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
buf = adj(Cshift(prop0, nu, -1));
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
// Two-scalar loop
tmp_vp = buf * Cshift(prop0, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * prop0;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].twoScalar[mu][nu],
tmp_vp, i_p);
}
}
// Three-scalar loop (no vertex)
tmp_vp = buf * Cshift(twoscalarProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * twoscalarProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].threeScalar[mu][nu],
tmp_vp, i_p);
}
}
// Three-scalar loop (hat{p}^2 insertion)
tmp_vp = buf * Cshift(psquaredProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * psquaredProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pSquaredInsertion[mu][nu],
tmp_vp, i_p);
}
}
}
}
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
LOG(Message) << "Saving momentum-projected correlators to '"
<< RESULT_FILE_NAME(par().output) << "'..."
<< std::endl;
saveResult(par().output, "scalar_loops", outputData);
}
}
void TVPCounterTerms::project(std::vector<Complex> &projection, const ScalarField &vp, int i_p)
{
std::vector<TComplex> vecBuf;
envGetTmp(ScalarField, vpPhase);
vpPhase = vp*(*momPhase_[i_p]);
sliceSum(vpPhase, vecBuf, Tp);
projection.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
projection[t] = TensorRemove(vecBuf[t]);
}
}