1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-13 01:05:36 +00:00
Grid/tests/hadrons/Test_sigma_to_nucleon.cc
2019-12-05 17:08:09 +00:00

155 lines
5.6 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Tests/Hadrons/Test_hadrons_spectrum.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
std::vector<std::string> flavour = {"l", "s", "c"};
std::vector<double> mass = {.01, .04, .2 };
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// sources
MSource::Point::Par ptPar;
ptPar.position = "0 0 0 0";
application.createModule<MSource::Point>("pt_0", ptPar);
ptPar.position = "0 0 0 4";
application.createModule<MSource::Point>("pt_4", ptPar);
// sink
MSink::Point::Par sinkPar;
sinkPar.mom = "0 0 0";
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
application.createModule<MSink::Point>("sink_spec", sinkPar);
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
std::string twist = "0. 0. 0. 0.";
for (unsigned int i = 0; i < flavour.size(); ++i)
{
// actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 12;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
actionPar.twist = twist;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
}
// propagators
MFermion::GaugeProp::Par quarkPar;
quarkPar.solver = "CG_l";
quarkPar.source = "pt_0";
application.createModule<MFermion::GaugeProp>("Qpt_l_0", quarkPar);
quarkPar.source = "pt_4";
application.createModule<MFermion::GaugeProp>("Qpt_l_4", quarkPar);
quarkPar.solver = "CG_s";
quarkPar.source = "pt_0";
application.createModule<MFermion::GaugeProp>("Qpt_s_0", quarkPar);
//This should be a loop - how do I make this?
quarkPar.solver = "CG_c";
quarkPar.source = "pt_0";
application.createModule<MFermion::GaugeProp>("Qpt_c_loop", quarkPar);
quarkPar.solver = "CG_l";
quarkPar.source = "pt_0";
application.createModule<MFermion::GaugeProp>("Qpt_l_loop", quarkPar);
MSink::Smear::Par smearPar;
smearPar.q="Qpt_l_0";
smearPar.sink = "sink_spec";
application.createModule<MSink::Smear>("Qpt_u_spec",smearPar);
MContraction::SigmaToNucleonEye::Par EyePar;
EyePar.output = "SigmaToNucleon/Eye_u";
EyePar.qqLoop = "Qpt_l_loop";
EyePar.quSpec = "Qpt_u_spec";
EyePar.qdTf = "Qpt_l_4";
EyePar.qsTi = "Qpt_s_0";
EyePar.tf = 4;
EyePar.sink = "sink";
application.createModule<MContraction::SigmaToNucleonEye>("SigmaToNucleonEye_u", EyePar);
EyePar.output = "SigmaToNucleon/Eye_c";
EyePar.qqLoop = "Qpt_c_loop";
application.createModule<MContraction::SigmaToNucleonEye>("SigmaToNucleonEye_c", EyePar);
MContraction::SigmaToNucleonNonEye::Par NonEyePar;
NonEyePar.output = "SigmaToNucleon/NonEye";
NonEyePar.quTi = "Qpt_l_0";
NonEyePar.quTf = "Qpt_l_4";
NonEyePar.quSpec = "Qpt_u_spec";
NonEyePar.qdTf = "Qpt_l_4";
NonEyePar.qsTi = "Qpt_s_0";
NonEyePar.tf = 4;
NonEyePar.sink = "sink";
application.createModule<MContraction::SigmaToNucleonNonEye>("SigmaToNucleonNonEye", NonEyePar);
// execution
application.saveParameterFile("stn.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}