mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
a5b0c492d7
a machine. If a "fixedSeed" is used, randoms should be reproducible across different machine decomposition since the generators are physically indexed and assigned in lexico ordering.
137 lines
3.6 KiB
C++
137 lines
3.6 KiB
C++
#ifndef GRID_LATTICE_RNG_H
|
|
#define GRID_LATTICE_RNG_H
|
|
|
|
#include <random>
|
|
|
|
namespace Grid {
|
|
|
|
// Wrap seed_seq to give common interface with random_device
|
|
class fixedSeed {
|
|
public:
|
|
|
|
typedef std::seed_seq::result_type result_type;
|
|
|
|
std::seed_seq src;
|
|
|
|
fixedSeed(std::vector<int> &seeds) : src(seeds.begin(),seeds.end()) {};
|
|
|
|
result_type operator () (void){
|
|
|
|
std::vector<result_type> list(1);
|
|
|
|
src.generate(list.begin(),list.end());
|
|
|
|
return list[0];
|
|
|
|
}
|
|
|
|
};
|
|
class GridRNG {
|
|
public:
|
|
// One generator per site.
|
|
std::vector<std::ranlux48> _generators;
|
|
|
|
// Uniform and Gaussian distributions from these generators.
|
|
std::uniform_real_distribution<double> _uniform;
|
|
std::normal_distribution<double> _gaussian;
|
|
|
|
GridBase *_grid;
|
|
int _vol;
|
|
|
|
int generator_idx(int os,int is){
|
|
return is*_grid->oSites()+os;
|
|
}
|
|
|
|
GridRNG(GridBase *grid) : _uniform{0,1}, _gaussian(0.0,1.0) {
|
|
_grid=grid;
|
|
_vol =_grid->iSites()*_grid->oSites();
|
|
_generators.resize(_vol);
|
|
// SeedFixedIntegers(seeds);
|
|
// worst case we seed properly but non-deterministically
|
|
SeedRandomDevice();
|
|
}
|
|
|
|
// FIXME: drive seeding from node zero and transmit to all
|
|
// to get unique randoms on each node
|
|
void SeedRandomDevice(void){
|
|
std::random_device rd;
|
|
Seed(rd);
|
|
}
|
|
void SeedFixedIntegers(std::vector<int> &seeds){
|
|
fixedSeed src(seeds);
|
|
Seed(src);
|
|
}
|
|
|
|
// This loop could be made faster to avoid the Ahmdahl by
|
|
// i) seed generators on each timeslice, for x=y=z=0;
|
|
// ii) seed generators on each z for x=y=0
|
|
// iii)seed generators on each y,z for x=0
|
|
// iv) seed generators on each y,z,x
|
|
// made possible by physical indexing.
|
|
template<class source> void Seed(source &src)
|
|
{
|
|
std::vector<int> gcoor;
|
|
|
|
for(int gidx=0;gidx<_grid->_gsites;gidx++){
|
|
int rank,o_idx,i_idx;
|
|
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
|
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
|
|
|
int l_idx=generator_idx(o_idx,i_idx);
|
|
|
|
typename source::result_type init = src();
|
|
|
|
_grid->Broadcast(0,(void *)&init,sizeof(init));
|
|
if( rank == _grid->ThisRank() ){
|
|
_generators[l_idx] = std::ranlux48(init);
|
|
}
|
|
}
|
|
}
|
|
|
|
//FIXME implement generic IO and create state save/restore
|
|
//void SaveState(const std::string<char> &file);
|
|
//void LoadState(const std::string<char> &file);
|
|
|
|
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,distribution &dist){
|
|
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
conformable(_grid,l._grid);
|
|
|
|
int Nsimd =_grid->Nsimd();
|
|
int osites=_grid->oSites();
|
|
|
|
int words = sizeof(vobj)/sizeof(vector_type);
|
|
std::vector<std::vector<scalar_type> > buf(Nsimd,std::vector<scalar_type>(words));
|
|
std::vector<scalar_type *> pointers(Nsimd);
|
|
|
|
for(int ss=0;ss<osites;ss++){
|
|
|
|
for(int si=0;si<Nsimd;si++){
|
|
|
|
int gdx = generator_idx(ss,si); // index of generator state
|
|
|
|
pointers[si] = (scalar_type *)&buf[si][0];
|
|
for(int idx=0;idx<words;idx++){
|
|
pointers[si][idx] = dist(_generators[gdx]);
|
|
}
|
|
|
|
}
|
|
// merge into SIMD lanes
|
|
merge(l._odata[ss],pointers);
|
|
}
|
|
};
|
|
};
|
|
|
|
// FIXME Implement a consistent seed management strategy
|
|
template <class vobj> inline void random(GridRNG &rng,Lattice<vobj> &l){
|
|
rng.fill(l,rng._uniform);
|
|
}
|
|
|
|
template <class vobj> inline void gaussian(GridRNG &rng,Lattice<vobj> &l){
|
|
rng.fill(l,rng._gaussian);
|
|
}
|
|
}
|
|
#endif
|