mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 09:45:36 +00:00
1126 lines
38 KiB
C++
1126 lines
38 KiB
C++
#include <cassert>
|
|
#include <complex>
|
|
#include <memory>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <string>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <strings.h>
|
|
#include <ctime>
|
|
#include <iostream>
|
|
#include <sys/time.h>
|
|
|
|
|
|
#ifdef GRID_HIP
|
|
#include <hipblas/hipblas.h>
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
#include <cublas_v2.h>
|
|
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
#include <oneapi/mkl.hpp>
|
|
#endif
|
|
|
|
#ifdef GRID_SYCL
|
|
#include <sycl/CL/sycl.hpp>
|
|
#include <sycl/usm.hpp>
|
|
cl::sycl::queue *theAccelerator;
|
|
void acceleratorInit(void)
|
|
{
|
|
int nDevices = 1;
|
|
cl::sycl::gpu_selector selector;
|
|
cl::sycl::device selectedDevice { selector };
|
|
theAccelerator = new sycl::queue (selectedDevice);
|
|
auto name = theAccelerator->get_device().get_info<sycl::info::device::name>();
|
|
printf("AcceleratorSyclInit: Selected device is %s\n",name.c_str()); fflush(stdout);
|
|
}
|
|
inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theAccelerator);};
|
|
inline void acceleratorFreeDevice(void *ptr){free(ptr,*theAccelerator);};
|
|
inline void acceleratorFreeDevice(void *ptr,size_t bytes){free(ptr,*theAccelerator);};
|
|
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theAccelerator->memset(base,value,bytes); theAccelerator->wait();}
|
|
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();}
|
|
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theAccelerator->memcpy(to,from,bytes); theAccelerator->wait();}
|
|
#define accelerator_barrier(dummy) { theAccelerator->wait(); }
|
|
#endif
|
|
|
|
#ifdef GRID_HIP
|
|
hipStream_t copyStream;
|
|
hipStream_t computeStream;
|
|
void acceleratorInit(void)
|
|
{
|
|
int device = 0;
|
|
auto discard = hipSetDevice(device);
|
|
discard = hipStreamCreate(©Stream);
|
|
discard = hipStreamCreate(&computeStream);
|
|
printf("AcceleratorHIPInit\n");
|
|
}
|
|
inline void *acceleratorAllocDevice(size_t bytes)
|
|
{
|
|
void *ptr=NULL;
|
|
auto err = hipMalloc((void **)&ptr,bytes);
|
|
if( err != hipSuccess ) {
|
|
ptr = (void *) NULL;
|
|
fprintf(stderr," hipMalloc failed for %ld %s \n",bytes,hipGetErrorString(err)); fflush(stderr);
|
|
}
|
|
return ptr;
|
|
};
|
|
inline void acceleratorFreeDevice(void *ptr,size_t bytes){ auto discard=hipFree(ptr);};
|
|
inline void acceleratorFreeDevice(void *ptr){ auto discard=hipFree(ptr);};
|
|
inline void acceleratorMemSet(void *base,int value,size_t bytes) { auto discard=hipMemset(base,value,bytes);}
|
|
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { auto discard=hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
|
|
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ auto discard=hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
|
|
#define accelerator_barrier(dummy) \
|
|
{ \
|
|
auto tmp=hipStreamSynchronize(computeStream); \
|
|
auto err = hipGetLastError(); \
|
|
if ( err != hipSuccess ) { \
|
|
printf("After hipDeviceSynchronize() : HIP error %s \n", hipGetErrorString( err )); \
|
|
puts(__FILE__); \
|
|
printf("Line %d\n",__LINE__); \
|
|
exit(0); \
|
|
} \
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef GRID_CUDA
|
|
cudaStream_t copyStream;
|
|
cudaStream_t computeStream;
|
|
void acceleratorInit(void)
|
|
{
|
|
int device = 0;
|
|
cudaSetDevice(device);
|
|
cudaStreamCreate(©Stream);
|
|
cudaStreamCreate(&computeStream);
|
|
}
|
|
inline void *acceleratorAllocDevice(size_t bytes)
|
|
{
|
|
void *ptr=NULL;
|
|
auto err = cudaMalloc((void **)&ptr,bytes);
|
|
if( err != cudaSuccess ) {
|
|
ptr = (void *) NULL;
|
|
printf(" cudaMalloc failed for %d %s \n",bytes,cudaGetErrorString(err));
|
|
}
|
|
return ptr;
|
|
};
|
|
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
|
|
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
|
|
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
|
|
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
|
|
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
|
|
#define accelerator_barrier(dummy) \
|
|
{ \
|
|
cudaStreamSynchronize(computeStream); \
|
|
cudaError err = cudaGetLastError(); \
|
|
if ( cudaSuccess != err ) { \
|
|
printf("accelerator_barrier(): Cuda error %s \n", \
|
|
cudaGetErrorString( err )); \
|
|
printf("File %s Line %d\n",__FILE__,__LINE__); \
|
|
fflush(stdout); \
|
|
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess); \
|
|
} \
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
template<class T> void acceleratorPut(T& dev,T&host)
|
|
{
|
|
acceleratorCopyToDevice(&host,&dev,sizeof(T));
|
|
}
|
|
template<class T> T acceleratorGet(T& dev)
|
|
{
|
|
T host;
|
|
acceleratorCopyFromDevice(&dev,&host,sizeof(T));
|
|
return host;
|
|
}
|
|
|
|
/**************************************************************
|
|
* Allocator
|
|
**************************************************************
|
|
*/
|
|
template<typename _Tp>
|
|
class devAllocator {
|
|
public:
|
|
typedef std::size_t size_type;
|
|
typedef std::ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
|
|
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
|
|
devAllocator() throw() { }
|
|
devAllocator(const devAllocator&) throw() { }
|
|
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
|
|
~devAllocator() throw() { }
|
|
pointer address(reference __x) const { return &__x; }
|
|
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
|
|
|
pointer allocate(size_type __n, const void* _p= 0)
|
|
{
|
|
size_type bytes = __n*sizeof(_Tp);
|
|
_Tp *ptr = (_Tp*) acceleratorAllocDevice(bytes);
|
|
if ( (_Tp*)ptr == (_Tp *) NULL ) {
|
|
printf("Grid Device Allocator got NULL for %lu bytes\n",(unsigned long) bytes );
|
|
}
|
|
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(pointer __p, size_type __n)
|
|
{
|
|
size_type bytes = __n * sizeof(_Tp);
|
|
acceleratorFreeDevice((void *)__p,bytes);
|
|
}
|
|
void construct(pointer __p, const _Tp& __val) { };
|
|
void construct(pointer __p) { };
|
|
void destroy(pointer __p) { };
|
|
};
|
|
|
|
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
|
|
|
/**************************************************************
|
|
* Microsecond timer
|
|
**************************************************************
|
|
*/
|
|
inline double usecond(void) {
|
|
struct timeval tv;
|
|
gettimeofday(&tv,NULL);
|
|
return 1.0e6*tv.tv_sec + 1.0*tv.tv_usec;
|
|
}
|
|
|
|
|
|
typedef float RealF;
|
|
typedef double RealD;
|
|
typedef std::complex<float> ComplexF;
|
|
typedef std::complex<double> ComplexD;
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
// Need to rearrange lattice data to be in the right format for a
|
|
// batched multiply. Might as well make these static, dense packed
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef GRID_HIP
|
|
typedef hipblasHandle_t gridblasHandle_t;
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
typedef cublasHandle_t gridblasHandle_t;
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
typedef cl::sycl::queue *gridblasHandle_t;
|
|
#endif
|
|
#ifdef GRID_ONE_MKL
|
|
typedef cl::sycl::queue *gridblasHandle_t;
|
|
#endif
|
|
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
|
typedef int32_t gridblasHandle_t;
|
|
#endif
|
|
|
|
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
|
|
|
|
class GridBLAS {
|
|
public:
|
|
|
|
|
|
static gridblasHandle_t gridblasHandle;
|
|
static int gridblasInit;
|
|
|
|
static void Init(void)
|
|
{
|
|
if ( ! gridblasInit ) {
|
|
#ifdef GRID_CUDA
|
|
std::cout << "cublasCreate"<<std::endl;
|
|
cublasCreate(&gridblasHandle);
|
|
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
|
#endif
|
|
#ifdef GRID_HIP
|
|
std::cout << "hipblasCreate"<<std::endl;
|
|
hipblasCreate(&gridblasHandle);
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
gridblasHandle = theAccelerator;
|
|
#endif
|
|
#ifdef GRID_ONE_MKL
|
|
cl::sycl::gpu_selector selector;
|
|
cl::sycl::device selectedDevice { selector };
|
|
cl::sycl::property_list q_prop{cl::sycl::property::queue::in_order()};
|
|
gridblasHandle =new sycl::queue (selectedDevice,q_prop);
|
|
#endif
|
|
gridblasInit=1;
|
|
}
|
|
}
|
|
|
|
// Force construct once
|
|
GridBLAS() { Init(); };
|
|
~GridBLAS() { };
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
// BLAS GEMM conventions:
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
// - C = alpha A * B + beta C
|
|
// Dimensions:
|
|
// - C_m.n
|
|
// - A_m.k
|
|
// - B_k.n
|
|
// - Flops = 8 M N K
|
|
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
|
// M=60, N=12
|
|
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
void synchronise(void)
|
|
{
|
|
#ifdef GRID_HIP
|
|
auto err = hipDeviceSynchronize();
|
|
assert(err==hipSuccess);
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
auto err = cudaDeviceSynchronize();
|
|
assert(err==cudaSuccess);
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
accelerator_barrier();
|
|
#endif
|
|
#ifdef GRID_ONE_MKL
|
|
gridblasHandle->wait();
|
|
#endif
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Single matrix GEMM -- fp64 and fp32
|
|
/////////////////////////////////////////////////////////////
|
|
void gemm(GridBLASOperation_t OpA,
|
|
GridBLASOperation_t OpB,
|
|
int m,int n, int k,
|
|
ComplexD alpha,
|
|
ComplexD* Amk, // Device pointer
|
|
ComplexD* Bkn,
|
|
ComplexD beta,
|
|
ComplexD* Cmn)
|
|
{
|
|
RealD t2=usecond();
|
|
|
|
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
|
assert(OpB!=GridBLAS_OP_T);
|
|
|
|
int lda = m; // m x k column major
|
|
int ldb = k; // k x n column major
|
|
int ldc = m; // m x b column major
|
|
if(OpA!=GridBLAS_OP_N)
|
|
lda = k;
|
|
if(OpB!=GridBLAS_OP_N)
|
|
ldb = n;
|
|
|
|
static deviceVector<ComplexD> alpha_p(1);
|
|
static deviceVector<ComplexD> beta_p(1);
|
|
// can prestore the 1 and the zero on device
|
|
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
|
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
|
RealD t0=usecond();
|
|
|
|
#ifdef GRID_HIP
|
|
hipblasOperation_t hOpA;
|
|
hipblasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
|
auto err = hipblasZgemm(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(hipblasDoubleComplex *) &alpha_p[0],
|
|
(hipblasDoubleComplex *) Amk, lda,
|
|
(hipblasDoubleComplex *) Bkn, ldb,
|
|
(hipblasDoubleComplex *) &beta_p[0],
|
|
(hipblasDoubleComplex *) Cmn, ldc);
|
|
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
cublasOperation_t hOpA;
|
|
cublasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
|
auto err = cublasZgemm(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(cuDoubleComplex *) &alpha_p[0],
|
|
(cuDoubleComplex *) Amk, lda,
|
|
(cuDoubleComplex *) Bkn, ldb,
|
|
(cuDoubleComplex *) &beta_p[0],
|
|
(cuDoubleComplex *) Cmn, ldc);
|
|
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
int64_t m64=m;
|
|
int64_t n64=n;
|
|
int64_t k64=k;
|
|
int64_t lda64=lda;
|
|
int64_t ldb64=ldb;
|
|
int64_t ldc64=ldc;
|
|
|
|
oneapi::mkl::transpose iOpA;
|
|
oneapi::mkl::transpose iOpB;
|
|
|
|
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
|
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
|
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
|
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
|
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
|
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
|
|
|
oneapi::mkl::blas::column_major::gemm(*gridblasHandle,
|
|
iOpA,
|
|
iOpB,
|
|
m64,n64,k64,
|
|
(ComplexD *) &alpha_p[0],
|
|
(const ComplexD *)Amk, (int64_t )lda64,
|
|
(const ComplexD *)Bkn, (int64_t )ldb64,
|
|
(ComplexD *) &beta_p[0],
|
|
(ComplexD *)Cmn, (int64_t)ldc64);
|
|
synchronise();
|
|
#endif
|
|
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
// Need a default/reference implementation; use Eigen
|
|
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,k,n);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
|
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,m,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk,k,m);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn,n,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
|
} else {
|
|
assert(0);
|
|
}
|
|
#endif
|
|
RealD t1=usecond();
|
|
RealD flops = 8.0*m*n*k;
|
|
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n);
|
|
}
|
|
void gemm(GridBLASOperation_t OpA,
|
|
GridBLASOperation_t OpB,
|
|
int m,int n, int k,
|
|
ComplexF alpha,
|
|
ComplexF* Amk, // Device pointer
|
|
ComplexF* Bkn,
|
|
ComplexF beta,
|
|
ComplexF* Cmn)
|
|
{
|
|
RealD t2=usecond();
|
|
|
|
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
|
assert(OpB!=GridBLAS_OP_T);
|
|
|
|
int lda = m; // m x k column major
|
|
int ldb = k; // k x n column major
|
|
int ldc = m; // m x b column major
|
|
if(OpA!=GridBLAS_OP_N)
|
|
lda = k;
|
|
if(OpB!=GridBLAS_OP_N)
|
|
ldb = n;
|
|
|
|
static deviceVector<ComplexF> alpha_p(1);
|
|
static deviceVector<ComplexF> beta_p(1);
|
|
// can prestore the 1 and the zero on device
|
|
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
|
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
|
RealD t0=usecond();
|
|
|
|
#ifdef GRID_HIP
|
|
hipblasOperation_t hOpA;
|
|
hipblasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
|
auto err = hipblasCgemm(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(hipblasComplex *) &alpha_p[0],
|
|
(hipblasComplex *) Amk, lda,
|
|
(hipblasComplex *) Bkn, ldb,
|
|
(hipblasComplex *) &beta_p[0],
|
|
(hipblasComplex *) Cmn, ldc);
|
|
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
cublasOperation_t hOpA;
|
|
cublasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
|
auto err = cublasCgemm(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(cuComplex *) &alpha_p[0],
|
|
(cuComplex *) Amk, lda,
|
|
(cuComplex *) Bkn, ldb,
|
|
(cuComplex *) &beta_p[0],
|
|
(cuComplex *) Cmn, ldc);
|
|
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
int64_t m64=m;
|
|
int64_t n64=n;
|
|
int64_t k64=k;
|
|
int64_t lda64=lda;
|
|
int64_t ldb64=ldb;
|
|
int64_t ldc64=ldc;
|
|
|
|
oneapi::mkl::transpose iOpA;
|
|
oneapi::mkl::transpose iOpB;
|
|
|
|
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
|
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
|
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
|
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
|
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
|
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
|
|
|
oneapi::mkl::blas::column_major::gemm(*gridblasHandle,
|
|
iOpA,
|
|
iOpB,
|
|
m64,n64,k64,
|
|
(ComplexF *) &alpha_p[0],
|
|
(const ComplexF *)Amk, (int64_t )lda64,
|
|
(const ComplexF *)Bkn, (int64_t )ldb64,
|
|
(ComplexF *) &beta_p[0],
|
|
(ComplexF *)Cmn, (int64_t )ldc64);
|
|
synchronise();
|
|
#endif
|
|
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
// Need a default/reference implementation; use Eigen
|
|
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,k,n);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
|
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,m,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk,k,m);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn,n,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn,m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
|
} else {
|
|
assert(0);
|
|
}
|
|
#endif
|
|
RealD t1=usecond();
|
|
RealD flops = 8.0*m*n*k;
|
|
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n);
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
void gemmBatched(int m,int n, int k,
|
|
ComplexD alpha,
|
|
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
|
deviceVector<ComplexD*> &Bkn,
|
|
ComplexD beta,
|
|
deviceVector<ComplexD*> &Cmn)
|
|
{
|
|
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
m,n,k,
|
|
alpha,
|
|
Amk,
|
|
Bkn,
|
|
beta,
|
|
Cmn);
|
|
}
|
|
void gemmBatched(int m,int n, int k,
|
|
ComplexF alpha,
|
|
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
|
deviceVector<ComplexF*> &Bkn,
|
|
ComplexF beta,
|
|
deviceVector<ComplexF*> &Cmn)
|
|
{
|
|
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
m,n,k,
|
|
alpha,
|
|
Amk,
|
|
Bkn,
|
|
beta,
|
|
Cmn);
|
|
}
|
|
|
|
void gemmBatched(GridBLASOperation_t OpA,
|
|
GridBLASOperation_t OpB,
|
|
int m,int n, int k,
|
|
ComplexD alpha,
|
|
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
|
deviceVector<ComplexD*> &Bkn,
|
|
ComplexD beta,
|
|
deviceVector<ComplexD*> &Cmn)
|
|
{
|
|
RealD t2=usecond();
|
|
int32_t batchCount = Amk.size();
|
|
assert(Bkn.size()==batchCount);
|
|
assert(Cmn.size()==batchCount);
|
|
|
|
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
|
assert(OpB!=GridBLAS_OP_T);
|
|
|
|
int lda = m; // m x k column major
|
|
int ldb = k; // k x n column major
|
|
int ldc = m; // m x b column major
|
|
if(OpA!=GridBLAS_OP_N)
|
|
lda = k;
|
|
if(OpB!=GridBLAS_OP_N)
|
|
ldb = n;
|
|
|
|
static deviceVector<ComplexD> alpha_p(1);
|
|
static deviceVector<ComplexD> beta_p(1);
|
|
// can prestore the 1 and the zero on device
|
|
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
|
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
|
RealD t0=usecond();
|
|
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
|
#ifdef GRID_HIP
|
|
hipblasOperation_t hOpA;
|
|
hipblasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
|
auto err = hipblasZgemmBatched(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(hipblasDoubleComplex *) &alpha_p[0],
|
|
(hipblasDoubleComplex **)&Amk[0], lda,
|
|
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
|
(hipblasDoubleComplex *) &beta_p[0],
|
|
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
|
batchCount);
|
|
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
|
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
cublasOperation_t hOpA;
|
|
cublasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
|
auto err = cublasZgemmBatched(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(cuDoubleComplex *) &alpha_p[0],
|
|
(cuDoubleComplex **)&Amk[0], lda,
|
|
(cuDoubleComplex **)&Bkn[0], ldb,
|
|
(cuDoubleComplex *) &beta_p[0],
|
|
(cuDoubleComplex **)&Cmn[0], ldc,
|
|
batchCount);
|
|
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
int64_t m64=m;
|
|
int64_t n64=n;
|
|
int64_t k64=k;
|
|
int64_t lda64=lda;
|
|
int64_t ldb64=ldb;
|
|
int64_t ldc64=ldc;
|
|
int64_t batchCount64=batchCount;
|
|
|
|
oneapi::mkl::transpose iOpA;
|
|
oneapi::mkl::transpose iOpB;
|
|
|
|
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
|
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
|
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
|
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
|
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
|
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
|
|
|
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
|
&iOpA,
|
|
&iOpB,
|
|
&m64,&n64,&k64,
|
|
(ComplexD *) &alpha_p[0],
|
|
(const ComplexD **)&Amk[0], (const int64_t *)&lda64,
|
|
(const ComplexD **)&Bkn[0], (const int64_t *)&ldb64,
|
|
(ComplexD *) &beta_p[0],
|
|
(ComplexD **)&Cmn[0], (const int64_t *)&ldc64,
|
|
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
|
synchronise();
|
|
#if 0
|
|
// This code was used to check the mat mul on Sunspot/OneMKL
|
|
std::cerr << " Called SYCL batched ZGEMM OpA "<< OpA << " OpB "<<OpB <<std::endl;
|
|
std::vector<ComplexD> A(m*k); // pointer list to matrices
|
|
std::vector<ComplexD> B(k*n);
|
|
std::vector<ComplexD> C(m*n);
|
|
// int sda = lda*k;
|
|
// int sdb = ldb*k;
|
|
// int sdc = ldc*n;
|
|
std::cerr << " Checking the GEMM results "<<std::endl;
|
|
for (int p = 0; p < 1; ++p) {
|
|
ComplexD * Amk_p; // pointer list to matrices
|
|
ComplexD * Bkn_p; // pointer list to matrices
|
|
ComplexD * Cmn_p; // pointer list to matrices
|
|
acceleratorCopyFromDevice((void *)&Amk[p],(void *)&Amk_p,sizeof(ComplexD*));
|
|
acceleratorCopyFromDevice((void *)&Bkn[p],(void *)&Bkn_p,sizeof(ComplexD*));
|
|
acceleratorCopyFromDevice((void *)&Cmn[p],(void *)&Cmn_p,sizeof(ComplexD*));
|
|
std::cerr << " p " << p << " copied pointers "<<std::endl;
|
|
acceleratorCopyFromDevice((void *)Amk_p,(void *)&A[0],m*k*sizeof(ComplexD));
|
|
acceleratorCopyFromDevice((void *)Bkn_p,(void *)&B[0],k*n*sizeof(ComplexD));
|
|
acceleratorCopyFromDevice((void *)Cmn_p,(void *)&C[0],m*n*sizeof(ComplexD));
|
|
std::cerr << " p " << p << " copied matrices "<<std::endl;
|
|
std::cerr << " C[0] "<<C[0]<<std::endl;
|
|
std::cerr << " A[0] "<<A[0]<<std::endl;
|
|
std::cerr << " B[0] "<<B[0]<<std::endl;
|
|
std::cerr << " m "<<m<<std::endl;
|
|
std::cerr << " n "<<n<<std::endl;
|
|
std::cerr << " k "<<k<<std::endl;
|
|
for (int mm = 0; mm < m; ++mm) {
|
|
for (int nn = 0; nn < n; ++nn) {
|
|
ComplexD c_mn(0.0);
|
|
for (int kk = 0; kk < k; ++kk) {
|
|
int idx_a, idx_b;
|
|
// int lda = m; // m x k column major
|
|
// int ldb = k; // k x n column major
|
|
// int ldc = m; // m x b column major
|
|
if(OpA!=GridBLAS_OP_N) {
|
|
idx_a =kk + mm*lda;
|
|
} else {
|
|
idx_a =mm + kk*lda;
|
|
}
|
|
if(OpB!=GridBLAS_OP_N) {
|
|
idx_b =nn + kk*ldb;
|
|
} else {
|
|
idx_b =kk + nn*ldb;
|
|
}
|
|
// std::cerr << " idx_a "<<idx_a<<" idx_b "<<idx_b<<std::endl;
|
|
|
|
ComplexD Ac = A[idx_a];
|
|
ComplexD Bc = B[idx_b];
|
|
if(OpA==GridBLAS_OP_C) Ac = conjugate(Ac);
|
|
if(OpB==GridBLAS_OP_C) Bc = conjugate(Bc);
|
|
|
|
c_mn += Ac*Bc;
|
|
}
|
|
std::cerr << " beta "<<beta<<" alpha "<<alpha<<" C_"<<mm<<","<<nn<<" "<<c_mn<<" "<<C[mm + nn*ldc]<<std::endl;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
// Need a default/reference implementation; use Eigen
|
|
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
|
});
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],k,n);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
|
});
|
|
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],m,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
|
});
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcd> eAmk(Amk[p],k,m);
|
|
Eigen::Map<Eigen::MatrixXcd> eBkn(Bkn[p],n,k);
|
|
Eigen::Map<Eigen::MatrixXcd> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
|
} );
|
|
} else {
|
|
assert(0);
|
|
}
|
|
#endif
|
|
RealD t1=usecond();
|
|
RealD flops = 8.0*m*n*k*batchCount;
|
|
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
|
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
|
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
|
}
|
|
|
|
void gemmBatched(GridBLASOperation_t OpA,
|
|
GridBLASOperation_t OpB,
|
|
int m,int n, int k,
|
|
ComplexF alpha,
|
|
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
|
deviceVector<ComplexF*> &Bkn,
|
|
ComplexF beta,
|
|
deviceVector<ComplexF*> &Cmn)
|
|
{
|
|
RealD t2=usecond();
|
|
int32_t batchCount = Amk.size();
|
|
|
|
assert(OpA!=GridBLAS_OP_T); // Complex case expect no transpose
|
|
assert(OpB!=GridBLAS_OP_T);
|
|
|
|
int lda = m; // m x k column major
|
|
int ldb = k; // k x n column major
|
|
int ldc = m; // m x b column major
|
|
if(OpA!=GridBLAS_OP_N)
|
|
lda = k;
|
|
if(OpB!=GridBLAS_OP_N)
|
|
ldb = n;
|
|
static deviceVector<ComplexF> alpha_p(1);
|
|
static deviceVector<ComplexF> beta_p(1);
|
|
// can prestore the 1 and the zero on device
|
|
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
|
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
|
RealD t0=usecond();
|
|
|
|
assert(Bkn.size()==batchCount);
|
|
assert(Cmn.size()==batchCount);
|
|
#ifdef GRID_HIP
|
|
hipblasOperation_t hOpA;
|
|
hipblasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
|
auto err = hipblasCgemmBatched(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(hipblasComplex *) &alpha_p[0],
|
|
(hipblasComplex **)&Amk[0], lda,
|
|
(hipblasComplex **)&Bkn[0], ldb,
|
|
(hipblasComplex *) &beta_p[0],
|
|
(hipblasComplex **)&Cmn[0], ldc,
|
|
batchCount);
|
|
|
|
assert(err==HIPBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_CUDA
|
|
cublasOperation_t hOpA;
|
|
cublasOperation_t hOpB;
|
|
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
|
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
|
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
|
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
|
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
|
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
|
auto err = cublasCgemmBatched(gridblasHandle,
|
|
hOpA,
|
|
hOpB,
|
|
m,n,k,
|
|
(cuComplex *) &alpha_p[0],
|
|
(cuComplex **)&Amk[0], lda,
|
|
(cuComplex **)&Bkn[0], ldb,
|
|
(cuComplex *) &beta_p[0],
|
|
(cuComplex **)&Cmn[0], ldc,
|
|
batchCount);
|
|
assert(err==CUBLAS_STATUS_SUCCESS);
|
|
#endif
|
|
#ifdef GRID_SYCL
|
|
int64_t m64=m;
|
|
int64_t n64=n;
|
|
int64_t k64=k;
|
|
int64_t lda64=lda;
|
|
int64_t ldb64=ldb;
|
|
int64_t ldc64=ldc;
|
|
int64_t batchCount64=batchCount;
|
|
|
|
oneapi::mkl::transpose iOpA;
|
|
oneapi::mkl::transpose iOpB;
|
|
|
|
if ( OpA == GridBLAS_OP_N ) iOpA = oneapi::mkl::transpose::N;
|
|
if ( OpA == GridBLAS_OP_T ) iOpA = oneapi::mkl::transpose::T;
|
|
if ( OpA == GridBLAS_OP_C ) iOpA = oneapi::mkl::transpose::C;
|
|
if ( OpB == GridBLAS_OP_N ) iOpB = oneapi::mkl::transpose::N;
|
|
if ( OpB == GridBLAS_OP_T ) iOpB = oneapi::mkl::transpose::T;
|
|
if ( OpB == GridBLAS_OP_C ) iOpB = oneapi::mkl::transpose::C;
|
|
|
|
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
|
&iOpA,
|
|
&iOpB,
|
|
&m64,&n64,&k64,
|
|
(ComplexF *) &alpha_p[0],
|
|
(const ComplexF **)&Amk[0], (const int64_t *)&lda64,
|
|
(const ComplexF **)&Bkn[0], (const int64_t *)&ldb64,
|
|
(ComplexF *) &beta_p[0],
|
|
(ComplexF **)&Cmn[0], (const int64_t *)&ldc64,
|
|
(int64_t)1,&batchCount64,std::vector<sycl::event>());
|
|
synchronise();
|
|
#endif
|
|
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
|
// Need a default/reference implementation; use Eigen
|
|
if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_N) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn ;
|
|
});
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_N) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],k,n);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn ;
|
|
});
|
|
} else if ( (OpA == GridBLAS_OP_N ) && (OpB == GridBLAS_OP_C) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],m,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk * eBkn.adjoint() ;
|
|
});
|
|
} else if ( (OpA == GridBLAS_OP_C ) && (OpB == GridBLAS_OP_C) ) {
|
|
thread_for (p, batchCount, {
|
|
Eigen::Map<Eigen::MatrixXcf> eAmk(Amk[p],k,m);
|
|
Eigen::Map<Eigen::MatrixXcf> eBkn(Bkn[p],n,k);
|
|
Eigen::Map<Eigen::MatrixXcf> eCmn(Cmn[p],m,n);
|
|
eCmn = beta * eCmn + alpha * eAmk.adjoint() * eBkn.adjoint() ;
|
|
} );
|
|
} else {
|
|
assert(0);
|
|
}
|
|
#endif
|
|
RealD t1=usecond();
|
|
RealD flops = 8.0*m*n*k*batchCount;
|
|
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
|
}
|
|
|
|
template<class CComplex>
|
|
double benchmark(int M, int N, int K, int BATCH)
|
|
{
|
|
int32_t N_A = M*K*BATCH;
|
|
int32_t N_B = K*N*BATCH;
|
|
int32_t N_C = M*N*BATCH;
|
|
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
|
|
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
|
|
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
|
|
CComplex alpha(1.0);
|
|
CComplex beta (1.0);
|
|
RealD flops = 8.0*M*N*K*BATCH;
|
|
int ncall=10;
|
|
deviceVector<CComplex *> As(BATCH);
|
|
deviceVector<CComplex *> Bs(BATCH);
|
|
deviceVector<CComplex *> Cs(BATCH);
|
|
for(int b = 0 ; b < BATCH;b++) {
|
|
CComplex *ptr;
|
|
ptr = &A[b*M*K]; acceleratorPut(As[b],ptr);
|
|
ptr = &B[b*K*N]; acceleratorPut(Bs[b],ptr);
|
|
ptr = &C[b*M*N]; acceleratorPut(Cs[b],ptr);
|
|
}
|
|
|
|
gemmBatched(M,N,K,
|
|
alpha,
|
|
As, // m x k
|
|
Bs, // k x n
|
|
beta,
|
|
Cs);
|
|
synchronise();
|
|
|
|
RealD t0 = usecond();
|
|
for(int i=0;i<ncall;i++){
|
|
gemmBatched(M,N,K,
|
|
alpha,
|
|
As, // m x k
|
|
Bs, // k x n
|
|
beta,
|
|
Cs);
|
|
synchronise();
|
|
}
|
|
RealD t1 = usecond();
|
|
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K)*BATCH;
|
|
flops = 8.0*M*N*K*BATCH*ncall;
|
|
flops = flops/(t1-t0)/1.e3;
|
|
return flops; // Returns gigaflops
|
|
}
|
|
|
|
template<class CComplex>
|
|
double benchmark(int M, int N, int K)
|
|
{
|
|
int32_t N_A = M*K;
|
|
int32_t N_B = K*N;
|
|
int32_t N_C = M*N;
|
|
deviceVector<CComplex> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(CComplex));
|
|
deviceVector<CComplex> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(CComplex));
|
|
deviceVector<CComplex> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(CComplex));
|
|
CComplex alpha(1.0);
|
|
CComplex beta (1.0);
|
|
RealD flops = 8.0*M*N*K;
|
|
int ncall=10;
|
|
|
|
gemm(GridBLAS_OP_C,GridBLAS_OP_N,
|
|
M,N,K,
|
|
alpha,
|
|
&A[0], // m x k
|
|
&B[0], // k x n
|
|
beta,
|
|
&C[0]);
|
|
synchronise();
|
|
|
|
RealD t0 = usecond();
|
|
for(int i=0;i<ncall;i++){
|
|
gemm(GridBLAS_OP_N,GridBLAS_OP_N,
|
|
M,N,K,
|
|
alpha,
|
|
&A[0], // m x k
|
|
&B[0], // k x n
|
|
beta,
|
|
&C[0]);
|
|
synchronise();
|
|
}
|
|
RealD t1 = usecond();
|
|
RealD bytes = 1.0*sizeof(CComplex)*(M*N*2+N*K+M*K);
|
|
flops = 8.0*M*N*K*ncall;
|
|
flops = flops/(t1-t0)/1.e3;
|
|
return flops; // Returns gigaflops
|
|
}
|
|
|
|
};
|
|
|
|
|
|
gridblasHandle_t GridBLAS::gridblasHandle;
|
|
int GridBLAS::gridblasInit;
|
|
FILE * FP;
|
|
|
|
template<class CComplex>
|
|
static void BLAS(void)
|
|
{
|
|
//int nbasis, int nrhs, int coarseVol
|
|
int basis[] = { 16,32,64 };
|
|
int rhs[] = { 8,12,16 };
|
|
int vol = 8*8*8*8;
|
|
int blk = 4*4*4*4;
|
|
|
|
GridBLAS blas;
|
|
|
|
int fpbits = sizeof(CComplex)*4;
|
|
std::cout<< "=================================================================================="<<std::endl;
|
|
std::cout<< "= batched GEMM fp"<<fpbits<<std::endl;
|
|
std::cout<< "=================================================================================="<<std::endl;
|
|
std::cout << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (coarse mrhs)"<<std::endl;
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
|
|
fprintf(FP,"GEMM\n\n M, N, K, BATCH, GF/s per rank fp%d\n",fpbits);
|
|
|
|
for(int b=0;b<3;b++){
|
|
for(int r=0;r<3;r++){
|
|
int M=basis[b];
|
|
int N=rhs[r];
|
|
int K=basis[b];
|
|
int BATCH=vol;
|
|
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
|
|
|
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
|
|
|
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
|
|
}}
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
std::cout << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block project)"<<std::endl;
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
for(int b=0;b<3;b++){
|
|
for(int r=0;r<3;r++){
|
|
int M=basis[b];
|
|
int N=rhs[r];
|
|
int K=blk;
|
|
int BATCH=vol;
|
|
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
|
|
|
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
|
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
|
|
}}
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
std::cout << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (block promote)"<<std::endl;
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
for(int b=0;b<3;b++){
|
|
for(int r=0;r<3;r++){
|
|
int M=rhs[r];
|
|
int N=blk;
|
|
int K=basis[b];
|
|
int BATCH=vol;
|
|
double p=blas.benchmark<CComplex>(M,N,K,BATCH);
|
|
|
|
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, BATCH, p);
|
|
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<BATCH<<"\t\t"<<p<<std::endl;
|
|
}}
|
|
fprintf(FP,"\n\n\n");
|
|
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
std::cout << " M "<<"\t\t"<<"N"<<"\t\t\t"<<"K"<<"\t\t"<<"Gflop/s / rank (inner product matrix)"<<std::endl;
|
|
std::cout << "----------------------------------------------------------"<<std::endl;
|
|
{
|
|
int M=12;
|
|
int N=12;
|
|
std::vector<int> ks({4*1024*1024, 2*1024*1024, 1024*1024, 256*1024, 1024 });
|
|
for( int kk=0;kk<ks.size();kk++ ) {
|
|
int K = ks[kk];
|
|
double p=blas.benchmark<CComplex>(M,N,K);
|
|
fprintf(FP,"%d, %d, %d, %d, %f\n", M, N, K, 1, p);
|
|
std::cout<< M<<"\t\t"<<N<<"\t\t"<<K<<"\t\t"<<1<<"\t\t"<<p<<std::endl;
|
|
}
|
|
}
|
|
std::cout << "=================================================================================="<<std::endl;
|
|
};
|
|
|
|
|
|
int main (int argc, char ** argv)
|
|
{
|
|
acceleratorInit();
|
|
FP = fopen("Benchmark_usqcd.csv","w");
|
|
std::cout << "=================================================================================="<<std::endl;
|
|
std::cout << " Batched BLAS benchmark " <<std::endl;
|
|
std::cout << "=================================================================================="<<std::endl;
|
|
BLAS<ComplexD>();
|
|
BLAS<ComplexF>();
|
|
fclose(FP);
|
|
}
|