1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/hadrons/Test_distil.cc

1073 lines
36 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Tests/Hadrons/Test_hadrons_distil.cc
Copyright (C) 2015-2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <typeinfo>
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
// Very simple iterators for Eigen tensors
// The only way I could get these iterators to work is to put the begin() and end() functions in the Eigen namespace
// So if Eigen ever defines these, we'll have a conflict and have to change this
namespace Eigen {
template <typename ET>
inline typename std::enable_if<EigenIO::is_tensor<ET>::value, typename EigenIO::Traits<ET>::scalar_type *>::type
begin( ET & et ) { return reinterpret_cast<typename Grid::EigenIO::Traits<ET>::scalar_type *>(et.data()); }
template <typename ET>
inline typename std::enable_if<EigenIO::is_tensor<ET>::value, typename EigenIO::Traits<ET>::scalar_type *>::type
end( ET & et ) { return begin(et) + et.size() * EigenIO::Traits<ET>::count; }
}
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_Global(Application &application)
{
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1100;
globalPar.trajCounter.end = 1120;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
}
/////////////////////////////////////////////////////////////
// Create a random gauge with the correct name
/////////////////////////////////////////////////////////////
std::string test_Gauge(Application &application, const char * pszBaseName )
{
std::string sGaugeName{ pszBaseName };
sGaugeName.append( "_gauge" );
application.createModule<MGauge::Random>( sGaugeName );
return sGaugeName;
}
/////////////////////////////////////////////////////////////
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void test_LapEvec(Application &application)
{
const char szModuleName[] = "LapEvec";
test_Gauge( application, szModuleName );
MDistil::LapEvecPar p;
p.Stout.steps = 3;
p.Stout.rho = 0.2;
p.Cheby.PolyOrder = 11;
p.Cheby.alpha = 0.55;
p.Cheby.beta = 12.5;
p.Lanczos.Nvec = 5;
p.Lanczos.Nk = 6;
p.Lanczos.Np = 2;
p.Lanczos.MaxIt = 1000;
p.Lanczos.resid = 1e-2;
p.Lanczos.IRLLog = 0;
application.createModule<MDistil::LapEvec>(szModuleName,p);
}
/////////////////////////////////////////////////////////////
// Test creation Solver
/////////////////////////////////////////////////////////////
std::string SolverName( const char * pSuffix = nullptr ) {
std::string sSolverName{ "CG" };
if( pSuffix && pSuffix[0] ) {
sSolverName.append( "_" );
sSolverName.append( pSuffix );
}
return sSolverName;
}
std::string test_Solver(Application &application, const char * pSuffix = nullptr )
{
std::string sActionName{ "DWF" };
if( pSuffix && pSuffix[0] ) {
sActionName.append( "_" );
sActionName.append( pSuffix );
}
MAction::DWF::Par actionPar;
actionPar.gauge = "LapEvec_gauge";
actionPar.Ls = 16;
actionPar.M5 = 1.8;
actionPar.mass = 0.005;
actionPar.boundary = "1 1 1 -1";
actionPar.twist = "0. 0. 0. 0.";
application.createModule<MAction::DWF>( sActionName, actionPar );
MSolver::RBPrecCG::Par solverPar;
solverPar.action = sActionName;
solverPar.residual = 1.0e-2;
solverPar.maxIteration = 10000;
std::string sSolverName{ SolverName( pSuffix ) };
application.createModule<MSolver::RBPrecCG>( sSolverName, solverPar );
return sSolverName;
}
/////////////////////////////////////////////////////////////
// Noises
/////////////////////////////////////////////////////////////
std::string test_Noises(Application &application, const std::string &sNoiseBaseName ) {
// DistilVectors parameters
MDistil::NoisesPar NoisePar;
NoisePar.nnoise = 1;
NoisePar.nvec = 5;
std::string sNoiseName{sNoiseBaseName + "_noise"};
application.createModule<MDistil::Noises>(sNoiseName,NoisePar);
return sNoiseName;
}
/////////////////////////////////////////////////////////////
// Perambulators
/////////////////////////////////////////////////////////////
std::string PerambulatorName( const char * pszSuffix = nullptr )
{
std::string sPerambulatorName{ "Peramb" };
if( pszSuffix && pszSuffix[0] )
sPerambulatorName.append( pszSuffix );
return sPerambulatorName;
}
void test_LoadPerambulators( Application &application, const char * pszSuffix = nullptr )
{
std::string sModuleName{ PerambulatorName( pszSuffix ) };
MIO::LoadPerambulator::Par PerambPar;
PerambPar.PerambFileName = sModuleName;
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.nvec = 5;
test_Noises(application, sModuleName); // I want these written after solver stuff
application.createModule<MIO::LoadPerambulator>( sModuleName, PerambPar );
}
void test_Perambulators( Application &application, const char * pszSuffix = nullptr )
{
std::string sModuleName{ PerambulatorName( pszSuffix ) };
// Perambulator parameters
MDistil::Perambulator::Par PerambPar;
PerambPar.lapevec = "LapEvec";
PerambPar.PerambFileName = sModuleName;
PerambPar.solver = test_Solver( application, pszSuffix );
PerambPar.Distil.tsrc = 0;
PerambPar.Distil.nnoise = 1;
PerambPar.nvec = 5;
test_Noises(application, sModuleName); // I want these written after solver stuff
application.createModule<MDistil::Perambulator>( sModuleName, PerambPar );
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
#define TEST_DISTIL_VECTORS_COMMON \
std::string sModuleName{"DistilVecs"}; \
if( pszSuffix ) \
sModuleName.append( pszSuffix ); \
std::string sPerambName{"Peramb"}; \
if( pszSuffix ) \
sPerambName.append( pszSuffix ); \
MDistil::DistilVectors::Par DistilVecPar; \
DistilVecPar.noise = sPerambName + "_noise"; \
DistilVecPar.perambulator = sPerambName; \
DistilVecPar.lapevec = "LapEvec"; \
DistilVecPar.tsrc = 0; \
if( pszNvec ) \
DistilVecPar.nvec = pszNvec
#define TEST_DISTIL_VECTORS_COMMON_END \
application.createModule<MDistil::DistilVectors>(sModuleName,DistilVecPar)
void test_DistilVectors(Application &application, const char * pszSuffix = nullptr, const char * pszNvec = nullptr )
{
TEST_DISTIL_VECTORS_COMMON;
TEST_DISTIL_VECTORS_COMMON_END;
}
void test_DistilVectorsSS(Application &application, const char * pszSink, const char * pszSource,
const char * pszSuffix = nullptr, const char * pszNvec = nullptr )
{
TEST_DISTIL_VECTORS_COMMON;
if( pszSink )
DistilVecPar.sink = pszSink;
if( pszSource )
DistilVecPar.source = pszSource;
TEST_DISTIL_VECTORS_COMMON_END;
}
/////////////////////////////////////////////////////////////
// Multiple Perambulators
/////////////////////////////////////////////////////////////
void test_MultiPerambulators(Application &application)
{
test_Perambulators( application, "5" );
MDistil::PerambFromSolve::Par SolvePar;
SolvePar.eigenPack="LapEvec";
SolvePar.PerambFileName="Peramb2";
SolvePar.solve = "Peramb5_unsmeared_sink";
SolvePar.Distil.nnoise = 1;
SolvePar.Distil.LI=5;
SolvePar.Distil.SI=4;
SolvePar.Distil.TI=8;
SolvePar.nvec=5;
SolvePar.nvec_reduced=2;
SolvePar.LI_reduced=2;
application.createModule<MDistil::PerambFromSolve>("Peramb2",SolvePar);
SolvePar.PerambFileName="Peramb3";
SolvePar.nvec_reduced=3;
SolvePar.LI_reduced=3;
application.createModule<MDistil::PerambFromSolve>("Peramb3",SolvePar);
test_DistilVectors( application, "2", "2" );
test_DistilVectors( application, "3", "3" );
test_DistilVectors( application, "5", "5" );
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs2_rho";
A2AMesonFieldPar.right="DistilVecs2_rho";
A2AMesonFieldPar.output="MesonSinksRho2";
A2AMesonFieldPar.gammas="Identity";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho2",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs2_phi";
A2AMesonFieldPar.right="DistilVecs2_phi";
A2AMesonFieldPar.output="MesonSinksPhi2";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi2",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs3_rho";
A2AMesonFieldPar.right="DistilVecs3_rho";
A2AMesonFieldPar.output="MesonSinksRho3";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho3",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs3_phi";
A2AMesonFieldPar.right="DistilVecs3_phi";
A2AMesonFieldPar.output="MesonSinksPhi3";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi3",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs5_rho";
A2AMesonFieldPar.right="DistilVecs5_rho";
A2AMesonFieldPar.output="MesonSinksRho5";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho5",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs5_phi";
A2AMesonFieldPar.right="DistilVecs5_phi";
A2AMesonFieldPar.output="MesonSinksPhi5";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi5",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonSink
/////////////////////////////////////////////////////////////
void test_MesonSink(Application &application)
{
// DistilVectors parameters
MContraction::A2AMesonField::Par A2AMesonFieldPar;
//A2AMesonFieldPar.left="Peramb_unsmeared_sink";
A2AMesonFieldPar.left="g5phi";
A2AMesonFieldPar.right="Peramb_unsmeared_sink";
A2AMesonFieldPar.output="DistilFields";
A2AMesonFieldPar.gammas="Identity";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonSink",A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonFields
/////////////////////////////////////////////////////////////
void test_MesonField(Application &application, const char * pszFileSuffix,
const char * pszObjectLeft = nullptr, const char * pszObjectRight = nullptr )
{
// DistilVectors parameters
if( pszObjectLeft == nullptr )
pszObjectLeft = pszFileSuffix;
if( pszObjectRight == nullptr )
pszObjectRight = pszObjectLeft;
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs";
A2AMesonFieldPar.right=A2AMesonFieldPar.left;
A2AMesonFieldPar.left.append( pszObjectLeft );
A2AMesonFieldPar.right.append( pszObjectRight );
A2AMesonFieldPar.output="MesonSinks";
A2AMesonFieldPar.output.append( pszFileSuffix );
A2AMesonFieldPar.gammas="Identity";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
std::string sObjectName{"DistilMesonField"};
sObjectName.append( pszFileSuffix );
application.createModule<MContraction::A2AMesonField>(sObjectName, A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// g5*unsmeared
/////////////////////////////////////////////////////////////
#ifdef DISTIL_PRE_RELEASE
void test_g5_sinks(Application &application)
{
// DistilVectors parameters
MDistil::g5_multiply::Par g5_multiplyPar;
g5_multiplyPar.input="Peramb_unsmeared_sink";
g5_multiplyPar.nnoise = 1;
g5_multiplyPar.LI=5;
g5_multiplyPar.Ns=4;
g5_multiplyPar.Nt_inv=1;
application.createModule<MDistil::g5_multiply>("g5phi",g5_multiplyPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - phiphiphi - efficient
/////////////////////////////////////////////////////////////
void test_BaryonFieldPhi2(Application &application)
{
// DistilVectors parameters
MDistil::BC2::Par BC2Par;
BC2Par.one="DistilVecs_phi";
BC2Par.two="DistilVecs_phi";
BC2Par.three="DistilVecs_phi";
BC2Par.output="BaryonFieldPhi2";
BC2Par.parity=1;
BC2Par.mom={"0 0 0"};
application.createModule<MDistil::BC2>("BaryonFieldPhi2",BC2Par);
}
/////////////////////////////////////////////////////////////
// BaryonFields - rhorhorho - efficient
/////////////////////////////////////////////////////////////
void test_BaryonFieldRho2(Application &application)
{
// DistilVectors parameters
MDistil::BC2::Par BC2Par;
BC2Par.one="DistilVecs_rho";
BC2Par.two="DistilVecs_rho";
BC2Par.three="DistilVecs_rho";
BC2Par.output="BaryonFieldRho2";
BC2Par.parity=1;
BC2Par.mom={"0 0 0"};
application.createModule<MDistil::BC2>("BaryonFieldRho2",BC2Par);
}
/////////////////////////////////////////////////////////////
// BaryonFields - phiphiphi
/////////////////////////////////////////////////////////////
void test_BaryonFieldPhi(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_phi";
BContractionPar.two="DistilVecs_phi";
BContractionPar.three="DistilVecs_phi";
BContractionPar.output="BaryonFieldPhi";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldPhi",BContractionPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - rhorhorho
/////////////////////////////////////////////////////////////
void test_BaryonFieldRho(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_rho";
BContractionPar.two="DistilVecs_rho";
BContractionPar.three="DistilVecs_rho";
BContractionPar.output="BaryonFieldRho";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldRho",BContractionPar);
}
/////////////////////////////////////////////////////////////
// BaryonContraction
/////////////////////////////////////////////////////////////
void test_Baryon2pt(Application &application)
{
// DistilVectors parameters
MDistil::Baryon2pt::Par Baryon2ptPar;
Baryon2ptPar.inputL="BaryonFieldPhi";
Baryon2ptPar.inputR="BaryonFieldRho";
Baryon2ptPar.quarksL="uud";
Baryon2ptPar.quarksR="uud";
Baryon2ptPar.output="C2_baryon";
application.createModule<MDistil::Baryon2pt>("C2_b",Baryon2ptPar);
}
#endif
/////////////////////////////////////////////////////////////
// emField
/////////////////////////////////////////////////////////////
void test_em(Application &application)
{
MGauge::StochEm::Par StochEmPar;
StochEmPar.gauge=PhotonR::Gauge::feynman;
StochEmPar.zmScheme=PhotonR::ZmScheme::qedL;
application.createModule<MGauge::StochEm>("Em",StochEmPar);
}
/////////////////////////////////////////////////////////////
// MesonA2ASlash
/////////////////////////////////////////////////////////////
void test_Aslash(Application &application)
{
// DistilVectors parameters
MContraction::A2AAslashField::Par A2AAslashFieldPar;
A2AAslashFieldPar.left="g5phi";
//A2AAslashFieldPar.right="DistilVecs_phi";
A2AAslashFieldPar.right="Peramb_unsmeared_sink";
A2AAslashFieldPar.output="unsmeared_Aslash";
A2AAslashFieldPar.emField={"Em"};
A2AAslashFieldPar.cacheBlock=2;
A2AAslashFieldPar.block=4;
application.createModule<MContraction::A2AAslashField>("Aslash_field",A2AAslashFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonA2ASlashSequential
/////////////////////////////////////////////////////////////
void test_AslashSeq(Application &application)
{
// DistilVectors parameters
MSolver::A2AAslashVectors::Par A2AAslashVectorsPar;
A2AAslashVectorsPar.vector="PerambS_unsmeared_sink";
A2AAslashVectorsPar.emField="Em";
A2AAslashVectorsPar.solver="CG_s";
A2AAslashVectorsPar.output="AslashSeq";
application.createModule<MSolver::A2AAslashVectors>("Aslash_seq",A2AAslashVectorsPar);
}
/////////////////////////////////////////////////////////////
// Aslash_perambulators
/////////////////////////////////////////////////////////////
void test_PerambulatorsSolve(Application &application)
{
// Perambulator parameters
MDistil::PerambFromSolve::Par PerambFromSolvePar;
PerambFromSolvePar.eigenPack="LapEvec";
PerambFromSolvePar.solve="Aslash_seq";
PerambFromSolvePar.PerambFileName="perambAslashS.bin";
PerambFromSolvePar.Distil.tsrc = 0;
PerambFromSolvePar.Distil.nnoise = 1;
PerambFromSolvePar.nvec=5;
application.createModule<MDistil::PerambFromSolve>("PerambAslashS",PerambFromSolvePar);
}
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
{
if( bGobbleWhiteSpace )
while( std::isspace(static_cast<unsigned char>(*pstr)) )
pstr++;
const char * p = pstr;
bool bMinus = false;
char c = * p++;
if( c == '+' )
c = * p++;
else if( c == '-' ) {
bMinus = true;
c = * p++;
}
int n = c - '0';
if( n < 0 || n > 9 )
return false;
while( * p >= '0' && * p <= '9' ) {
n = n * 10 + ( * p ) - '0';
p++;
}
if( bMinus )
n *= -1;
ri = n;
pstr = p;
return true;
}
#ifdef DEBUG
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
template<typename T>
typename std::enable_if<Grid::EigenIO::is_tensor<T>::value && !Grid::Hadrons::MDistil::is_named_tensor<T>::value>::type
DebugShowTensor(T &x, const char * n, std::string * pIndexNames=nullptr)
{
const MyTensor::Index s{x.size()};
std::cout << n << ".size() = " << s << std::endl;
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
const auto d{x.dimensions()};
//std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
std::cout << "Dimensions are ";
for(auto i = 0; i < x.NumDimensions ; i++)
std::cout << "[" << d[i] << "]";
std::cout << std::endl;
MyTensor::Index SizeCalculated{1};
std::cout << "Dimensions again";
for(int i=0 ; i < x.NumDimensions ; i++ ) {
std::cout << " : [" << i;
if( pIndexNames )
std::cout << ", " << pIndexNames[i];
std::cout << "]=" << x.dimension(i);
SizeCalculated *= d[i];
}
std::cout << std::endl;
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
assert( SizeCalculated == s );
// Initialise
assert( x.NumDimensions == 3 );
for( int i = 0 ; i < d[0] ; i++ )
for( int j = 0 ; j < d[1] ; j++ )
for( int k = 0 ; k < d[2] ; k++ ) {
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
SizeCalculated--;
}
// Show raw data
std::cout << "Data follow : " << std::endl;
typename T::Scalar * p = x.data();
for( auto i = 0 ; i < s ; i++ ) {
if( i ) std::cout << ", ";
std::cout << n << ".data()[" << i << "]=" << * p++;
}
std::cout << std::endl;
}
template<typename T>
typename std::enable_if<Grid::Hadrons::MDistil::is_named_tensor<T>::value>::type
DebugShowTensor(T &x, const char * n)
{
DebugShowTensor( x.tensor, n, &x.IndexNames[0] );
}
// Test whether typedef and underlying types are the same
void DebugTestTypeEqualities(void)
{
Real r1;
RealD r2;
double r3;
const std::type_info &tr1{typeid(r1)};
const std::type_info &tr2{typeid(r2)};
const std::type_info &tr3{typeid(r3)};
if( tr1 == tr2 && tr2 == tr3 )
std::cout << "r1, r2 and r3 are the same type" << std::endl;
else
std::cout << "r1, r2 and r3 are different types" << std::endl;
std::cout << "r1 is a " << tr1.name() << std::endl;
std::cout << "r2 is a " << tr2.name() << std::endl;
std::cout << "r3 is a " << tr3.name() << std::endl;
// These are the same
Complex c1;
std::complex<Real> c2;
const std::type_info &tc1{typeid(c1)};
const std::type_info &tc2{typeid(c2)};
const std::type_info &tc3{typeid(SpinVector::scalar_type)};
if( tc1 == tc2 && tc2 == tc3)
std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl;
else
std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl;
std::cout << "c1 is a " << tc1.name() << std::endl;
std::cout << "c2 is a " << tc2.name() << std::endl;
std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl;
// These are the same
SpinVector s1;
iSpinVector<Complex > s2;
iScalar<iVector<iScalar<Complex>, Ns> > s3;
const std::type_info &ts1{typeid(s1)};
const std::type_info &ts2{typeid(s2)};
const std::type_info &ts3{typeid(s3)};
if( ts1 == ts2 && ts2 == ts3 )
std::cout << "s1, s2 and s3 are the same type" << std::endl;
else
std::cout << "s1, s2 and s3 are different types" << std::endl;
std::cout << "s1 is a " << ts1.name() << std::endl;
std::cout << "s2 is a " << ts2.name() << std::endl;
std::cout << "s3 is a " << ts3.name() << std::endl;
// These are the same
SpinColourVector sc1;
iSpinColourVector<Complex > sc2;
const std::type_info &tsc1{typeid(sc1)};
const std::type_info &tsc2{typeid(sc2)};
if( tsc1 == tsc2 )
std::cout << "sc1 and sc2 are the same type" << std::endl;
else
std::cout << "sc1 and sc2 are different types" << std::endl;
std::cout << "sc1 is a " << tsc1.name() << std::endl;
std::cout << "sc2 is a " << tsc2.name() << std::endl;
}
bool DebugEigenTest()
{
{
Eigen::TensorFixedSize<std::complex<double>,Eigen::Sizes<3,4,5>> x;
DebugShowTensor(x, "fixed");
}
const char pszTestFileName[] = "test_tensor.bin";
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
MyTensor x(as, 2,1,4);
DebugShowTensor(x, "x");
x.write(pszTestFileName);
// Test initialisation of an array of strings
for( auto a : as )
std::cout << a << std::endl;
Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> p{as,2,7,2};
DebugShowTensor(p, "p");
std::cout << "p.IndexNames follow" << std::endl;
for( auto a : p.IndexNames )
std::cout << a << std::endl;
// Now see whether we can read a tensor back
std::array<std::string,3> Names2={"Alpha", "Gamma", "Delta"};
MyTensor y(Names2, 2,4,1);
y.read(pszTestFileName);
DebugShowTensor(y, "y");
// Now see whether we can read a tensor back from an hdf5 file
const char * pszFileName = "test";
y.write(pszFileName);
{
MyTensor z;
const char * pszName = "z1";
DebugShowTensor(z, pszName);
z.read(pszFileName);
DebugShowTensor(z, pszName);
}
{
MyTensor z(Names2,2,0,0);
const char * pszName = "z2";
DebugShowTensor(z, pszName);
z.read(pszFileName);
DebugShowTensor(z, pszName);
}
{
// Now see whether we can read a tensor back from an xml file
const char * pszXmlName = "test.xml";
{
XmlWriter w(pszXmlName);
y.write<XmlWriter>(w);
}
MyTensor z;
const char * pszName = "xml1";
DebugShowTensor(z, pszName);
XmlReader r(pszXmlName);
z.read<XmlReader>(r);
DebugShowTensor(z, pszName);
}
if((0)) // The following tests would fail
{
MyTensor z(Names2,2,0,78);
//std::array<std::string,3> NamesBad={"Alpha", "Gamma", "Kilo"};
//MyTensor z(NamesBad);
const char * pszName = "zFail";
DebugShowTensor(z, pszName);
z.read(pszFileName);
DebugShowTensor(z, pszName);
}
// Testing whether typedef produces the same type - yes it does
DebugTestTypeEqualities();
std::cout << std::endl;
// How to access members of SpinColourVector
SpinColourVector sc;
for( int s = 0 ; s < Ns ; s++ ) {
auto cv{sc()(s)};
iVector<Complex,Nc> c2{sc()(s)};
std::cout << " cv is a " << typeid(cv).name() << std::endl;
std::cout << " c2 is a " << typeid(c2).name() << std::endl;
for( int c = 0 ; c < Nc ; c++ ) {
Complex & z{cv(c)};
std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl;
}
}
// We could have removed the Lorentz index independently, but much easier to do as we do above
iVector<iVector<Complex,Nc>,Ns> sc2{sc()};
std::cout << "sc() is a " << typeid(sc()).name() << std::endl;
std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl;
// Or you can access elements directly
std::complex<Real> z = sc()(0)(0);
std::cout << "z = " << z << std::endl;
sc()(3)(2) = std::complex<Real>{3.141,-3.141};
std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl;
return true;
}
template <typename T>
void DebugGridTensorTest_print( int i )
{
// std::cout << i << " : " << EigenIO::is_tensor<T>::value
// << ", Rank " << EigenIO::Traits<T>::Rank
// << ", count " << EigenIO::Traits<T>::count
// << std::endl;
}
// begin() and end() are the minimum necessary to support range-for loops
// should really turn this into an iterator ...
template<typename T, int N>
class TestObject {
public:
using value_type = T;
private:
value_type * m_p;
public:
TestObject() {
m_p = reinterpret_cast<value_type *>(std::malloc(N * sizeof(value_type)));
}
~TestObject() { std::free(m_p); }
inline value_type * begin(void) { return m_p; }
inline value_type * end(void) { return m_p + N; }
};
template<typename ET> typename std::enable_if<EigenIO::is_tensor<ET>::value>::type
dump_tensor(const ET & et, const char * psz = nullptr) {
if( psz )
std::cout << psz << ": ";
else
std::cout << "Unnamed tensor: ";
Serializable::WriteMember( std::cout, et );
}
template <int Options>
void EigenSliceExample()
{
std::cout << "Eigen example, Options = " << Options << std::endl;
using T2 = Eigen::Tensor<int, 2, Options>;
T2 a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
{600, 700, 800}, {900, 1000, 1100}});
std::cout << "a\n" << a << std::endl;
dump_tensor( a, "a" );
Eigen::array<typename T2::Index, 2> offsets = {0, 1};
Eigen::array<typename T2::Index, 2> extents = {4, 2};
T2 slice = a.slice(offsets, extents);
std::cout << "slice\n" << slice << std::endl;
dump_tensor( slice, "slice" );
std::cout << "\n========================================" << std::endl;
}
template <int Options>
void EigenSliceExample2()
{
using TestScalar = std::complex<float>;
using T3 = Eigen::Tensor<TestScalar, 3, Options>;
using T2 = Eigen::Tensor<TestScalar, 2, Options>;
T3 a(2,3,4);
std::cout << "Initialising a:";
TestScalar f{ 0 };
const TestScalar Inc{ 1, -1 };
for( auto &c : a ) {
c = f;
f += Inc;
}
std::cout << std::endl;
std::cout << "Validating a (Eigen::" << ( ( Options & Eigen::RowMajor ) ? "Row" : "Col" ) << "Major):" << std::endl;
f = 0;
for( int i = 0 ; i < a.dimension(0) ; i++ )
for( int j = 0 ; j < a.dimension(1) ; j++ )
for( int k = 0 ; k < a.dimension(2) ; k++ ) {
std::cout << " a(" << i << "," << j << "," << k << ")=" << a(i,j,k) << std::endl;
assert( ( Options & Eigen::RowMajor ) == 0 || a(i,j,k) == f );
f += Inc;
}
//std::cout << std::endl;
//std::cout << "a initialised to:\n" << a << std::endl;
dump_tensor( a, "a" );
std::cout << std::endl;
Eigen::array<typename T3::Index, 3> offsets = {0,1,1};
Eigen::array<typename T3::Index, 3> extents = {1,2,2};
T3 b;
b = a.slice( offsets, extents );//.reshape(NewExtents);
std::cout << "b = a.slice( offsets, extents ):\n" << b << std::endl;
dump_tensor( b, "b" );
T2 c(3,4);
c = a.chip(0,1);
std::cout << "c = a.chip(0,0):\n" << c << std::endl;
dump_tensor( c, "c" );
//T2 d = b.reshape(extents);
//std::cout << "b.reshape(extents) is:\n" << d << std::endl;
std::cout << "\n========================================" << std::endl;
}
void DebugFelixTensorTest( void )
{
unsigned int Nmom = 2;
unsigned int Nt = 2;
unsigned int N_1 = 2;
unsigned int N_2 = 2;
unsigned int N_3 = 2;
using BaryonTensorSet = Eigen::Tensor<Complex, 6, Eigen::RowMajor>;
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
std::vector<Complex> Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2);
using BaryonTensorMap = Eigen::TensorMap<BaryonTensorSet>;
BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3);
EigenSliceExample<Eigen::RowMajor>();
EigenSliceExample<0>();
EigenSliceExample2<Eigen::RowMajor>();
EigenSliceExample2<0>();
}
bool DebugGridTensorTest( void )
{
DebugFelixTensorTest();
typedef Complex t1;
typedef iScalar<t1> t2;
typedef iVector<t1, Ns> t3;
typedef iMatrix<t1, Nc> t4;
typedef iVector<iMatrix<t1,1>,4> t5;
typedef iScalar<t5> t6;
typedef iMatrix<t6, 3> t7;
typedef iMatrix<iVector<iScalar<t7>,4>,2> t8;
int i = 1;
DebugGridTensorTest_print<t1>( i++ );
DebugGridTensorTest_print<t2>( i++ );
DebugGridTensorTest_print<t3>( i++ );
DebugGridTensorTest_print<t4>( i++ );
DebugGridTensorTest_print<t5>( i++ );
DebugGridTensorTest_print<t6>( i++ );
DebugGridTensorTest_print<t7>( i++ );
DebugGridTensorTest_print<t8>( i++ );
//using TOC7 = TestObject<std::complex<double>, 7>;
using TOC7 = t7;
TOC7 toc7;
constexpr std::complex<double> Inc{1,-1};
std::complex<double> Start{Inc};
for( auto &x : toc7 ) {
x = Start;
Start += Inc;
}
i = 0;
std::cout << "toc7:";
for( auto x : toc7 ) std::cout << " [" << i++ << "]=" << x;
std::cout << std::endl;
//t2 o2;
//auto a2 = TensorRemove(o2);
//t3 o3;
//t4 o4;
//auto a3 = TensorRemove(o3);
//auto a4 = TensorRemove(o4);
return true;
}
bool ConvertPeramb(const char * pszSource, const char * pszDest) {
Grid::Hadrons::MDistil::PerambTensor p(Hadrons::MDistil::PerambIndexNames);
p.ReadBinary( pszSource );
p.write(pszDest);
return true;
}
#endif
int main(int argc, char *argv[])
{
#ifdef DEBUG
// Debug only - test of Eigen::Tensor
//if( DebugEigenTest() ) return 0;
//if(DebugGridTensorTest()) return 0;
//if(ConvertPeramb("PerambL_100_tsrc0.3000","PerambL_100_tsrc0.3000")) return 0;
#endif
// Decode command-line parameters. 1st one is which test to run
int iTestNum = -1;
for(int i = 1 ; i < argc ; i++ ) {
std::cout << "argv[" << i << "]=\"" << argv[i] << "\"" << std::endl;
const char * p = argv[i];
if( * p == '/' || * p == '-' ) {
p++;
char c = * p++;
switch(toupper(c)) {
case 'T':
if( bNumber( iTestNum, p ) ) {
std::cout << "Test " << iTestNum << " requested";
if( * p )
std::cout << " (ignoring trailer \"" << p << "\")";
std::cout << std::endl;
}
else
std::cout << "Invalid test \"" << &argv[i][2] << "\"" << std::endl;
break;
default:
std::cout << "Ignoring switch \"" << &argv[i][1] << "\"" << std::endl;
break;
}
}
}
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
// For now perform free propagator test - replace this with distillation test(s)
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
//const unsigned int nt = GridDefaultLatt()[Tp];
switch(iTestNum) {
case 0:
test_Global( application );
test_LapEvec( application );
break;
case 1:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
break;
default: // 2
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
break;
case 3:
test_Global( application );
test_LapEvec( application );
test_LoadPerambulators( application );
test_DistilVectors( application );
break;
case 4:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_MesonField( application, "Phi", "_phi" );
test_MesonField( application, "Rho", "_rho" );
break;
case 5:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_Perambulators( application, "S" );
test_DistilVectors( application, "S" );
test_MesonField( application, "SPhi", "S_phi" );
test_MesonField( application, "SRho", "S_rho" );
break;
#ifdef DISTIL_PRE_RELEASE
case 6: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_g5_sinks( application );
test_MesonSink( application );
break;
case 7: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_BaryonFieldPhi( application );
test_BaryonFieldRho( application );
break;
#endif
case 8: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_MesonField( application, "Phi", "_phi" );
test_MesonField( application, "Rho", "_rho" );
break;
#ifdef DISTIL_PRE_RELEASE
case 9: // 3
test_Global( application );
test_Solver( application );
test_Baryon2pt( application );
break;
case 10: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_g5_sinks( application );
test_em( application );
test_Aslash( application );
break;
case 11: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_BaryonFieldPhi2( application );
test_BaryonFieldRho2( application );
break;
#endif
case 12: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application, "S" );
test_em( application );
test_AslashSeq( application );
test_PerambulatorsSolve( application );
test_DistilVectorsSS( application, "AslashSeq", nullptr, "S" );
test_MesonField( application, "AslashSeq" );
break;
case 13:
test_Global( application );
test_LapEvec( application );
test_MultiPerambulators( application );
break;
}
// execution
static const char XmlFileName[] = "test_distil.xml";
application.saveParameterFile( XmlFileName );
const std::vector<int> &lat{GridDefaultLatt()};
if( lat.size() == 4 && lat[0] == 4 && lat[1] == 4 && lat[2] == 4 && lat[3] == 8 )
application.run();
else
LOG(Warning) << "The parameters in " << XmlFileName << " are designed to run on a laptop usid --grid 4.4.4.8" << std::endl;
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}